Performance based seismic qualification of reinforced concrete nuclear materials processing facilities

Abstract

A seismic qualification of a reinforced concrete nuclear materials processing facility using performance based acceptance criteria is presented. Performance goals are defined in terms of a minimum annual seismic failure frequency. Pushover analyses are used to determine the building`s ultimate capacity and relate the capacity to roof drift and joint rotation. Nonlinear dynamic analyses are used to quantify the building`s drift using a suite of ground motion intensities representing varying soil conditions and levels of seismic hazard. A correlation between joint rotation and building drift to damage state is developed from experimental data. The damage state and seismic hazard are convolved to determine annual seismic failure frequency. The results of this rigorous approach is compared to those using equivalent force methods and pushover techniques recommended by ATC-19 and FEMA-273

    Similar works