30 research outputs found

    Recruitment of Cdc42 through the GAP domain of RLIP participates in remodeling of the actin cytoskeleton and is involved in Xenopus gastrulation.

    Get PDF
    International audienceThe transduction pathways that branch out of fibroblast growth factor signaling are essential for the induction of the mesoderm and the specification of the vertebrate body plan. One of these pathways is thought to control remodeling of the actin cytoskeleton through the Ral binding protein (RLIP also known as RalBP1), an effector of the small G protein Ral. RLIP contains a region of homology with the GTPase-activating protein (GAP) domain involved in the regulation of GTPases of the Rho family. We demonstrate here that the GAP domain of RLIP is responsible for the stability of the actin cytoskeleton in Xenopus laevis embryos. We also demonstrate that the complete N-terminal domain of RLIP containing the mu2 binding domain (mu2BD) and the GAP domain induces disruption of the actin cytoskeleton when targeted to the plasma membrane. Neither domain, however, has any effect on the actin cytoskeleton when individually targeted to the plasma membrane. We also determined that Cdc42-GDP, but neither Rac-GDP nor Rho-GDP, rescues the effect of expression of the membrane-localized Xenopus RLIP on the actin cytoskeleton. We show that the GAP domain of RLIP interacts in vivo with Cdc42-GTP and Cdc42-GDP. Finally, a single mutation (K244A) in the GAP sequence prevented embryos from gastrulating. These results demonstrate that to participate in the control of the actin cytoskeleton, RLIP needs its complete N-terminal region coding for the mu2BD and the GAP domain. We suggest that RLIP, by coordinating two complementary mechanisms, the endocytosis of clathrin-coated pits and the remodeling of cortical actin, participates in the gastrulation process

    Role of the unique, non-essential phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) in; Corynebacterium glutamicum;

    Get PDF
    Bacterial lipoproteins are secreted proteins that are post-translationally lipidated. Following synthesis, preprolipoproteins are transported through the cytoplasmic membrane via the Sec or Tat translocon. As they exit the transport machinery, they are recognized by a phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt), which converts them to prolipoproteins by adding a diacylglyceryl group to the sulfhydryl side chain of the invariant Cys; +1; residue. Lipoprotein signal peptidase (LspA or signal peptidase II) subsequently cleaves the signal peptide, liberating the α-amino group of Cys; +1; , which can eventually be further modified. Here, we identified the; lgt; and; lspA; genes from; Corynebacterium glutamicum; and found that they are unique but not essential. We found that Lgt is necessary for the acylation and membrane anchoring of two model lipoproteins expressed in this species: MusE, a; C. glutamicum; maltose-binding lipoprotein, and LppX, a; Mycobacterium tuberculosis; lipoprotein. However, Lgt is not required for these proteins' signal peptide cleavage, or for LppX glycosylation. Taken together, these data show that in; C. glutamicum; the association of some lipoproteins with membranes through the covalent attachment of a lipid moiety is not essential for further post-translational modification

    Etude de l'implication de RLIP dans les mouvements morphogénétiques de la gastrulation chez Xénopus laevis

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Click-chemistry approach to study mycoloylated proteins: Evidence for PorB and PorC porins mycoloylation in Corynebacterium glutamicum.

    No full text
    Protein mycoloylation is a recently identified, new form of protein acylation. This post-translational modification consists in the covalent attachment of mycolic acids residues to serine. Mycolic acids are long chain, α-branched, β-hydroxylated fatty acids that are exclusively found in the cell envelope of Corynebacteriales, a bacterial order that includes important genera such as Mycobacterium, Nocardia or Corynebacterium. So far, only 3 mycoloylated proteins have been identified: PorA, PorH and ProtX from C. glutamicum. Whereas the identity and function of ProtX is unknown, PorH and PorA associate to form a membrane channel, the activity of which is dependent upon PorA mycoloylation. However, the exact role of mycoloylation and the generality of this phenomenon are still unknown. In particular, the identity of other mycoloylated proteins, if any, needs to be determined together with establishing whether such modification occurs in Corynebacteriales genera other than Corynebacterium. Here, we tested whether a metabolic labeling and click-chemistry approach could be used to detect mycoloylated proteins. Using a fatty acid alkyne analogue, we could indeed label PorA, PorH and ProtX and determine ProtX mycoloylation site. Importantly, we also show that two other porins from C. glutamicum, PorB and PorC are mycoloylated
    corecore