24 research outputs found

    A Central Role for C1q/TNF-Related Protein 13 (CTRP13) in Modulating Food Intake and Body Weight

    Get PDF
    C1q/TNF-related protein 13 (CTRP13), a hormone secreted by adipose tissue (adipokines), helps regulate glucose metabolism in peripheral tissues. We previously reported that CTRP13 expression is increased in obese and hyperphagic leptin-deficient mice, suggesting that it may modulate food intake and body weight. CTRP13 is also expressed in the brain, although its role in modulating whole-body energy balance remains unknown. Here, we show that CTRP13 is a novel anorexigenic factor in the mouse brain. Quantitative PCR demonstrated that food restriction downregulates Ctrp13 expression in mouse hypothalamus, while high-fat feeding upregulates expression. Central administration of recombinant CTRP13 suppressed food intake and reduced body weight in mice. Further, CTRP13 and the orexigenic neuropeptide agouti-related protein (AgRP) reciprocally regulate each other’s expression in the hypothalamus: central delivery of CTRP13 suppressed Agrp expression, while delivery of AgRP increased Ctrp13 expression. Food restriction alone reduced Ctrp13 and increased orexigenic neuropeptide gene (Npy and Agrp) expression in the hypothalamus; in contrast, when food restriction was coupled to enhanced physical activity in an activity-based anorexia (ABA) mouse model, hypothalamic expression of both Ctrp13 and Agrp were upregulated. Taken together, these results suggest that CTRP13 and AgRP form a hypothalamic feedback loop to modulate food intake and that this neural circuit may be disrupted in an anorexic-like condition

    Altered Metabolism and Lipodystrophy in the Early B-Cell Factor 1-Deficient Mouse

    No full text
    We previously reported that mice deficient for the transcription factor early B-cell factor (Ebf1) exhibit markedly increased numbers of osteoblasts, bone formation rate, and serum osteocalcin, but the bone marrow of Ebf1−/− mice is also striking in its increased marrow adiposity. The purpose of this work was to analyze the metabolic phenotype that accompanies the altered bone morphology of Ebf1−/− mice. Whereas marrow adiposity was increased, deposition of white adipose tissue in other regions of the body was severely reduced (sc 40–50%, abdominally 80–85%). Brown adipose exhibited decreased lipid deposition. Subcutaneous and perigonadal white adipose tissue showed a decrease in mRNA transcripts for peroxisomal proliferator-activated receptor-γ2 and CCAAT/enhancer-binding protein-β in Ebf1−/− tissue compared with wild type. Circulating levels of leptin were decreased in Ebf1−/− animals compared with their littermate controls (down 65-95%), whereas adiponectin remained comparable after 2 wk of age. Serum analysis also found the Ebf1−/− animals were hypoglycemic and hypotriglyceridemic. After ip injection of insulin, the serum glucose levels in Ebf1−/− mice took longer to recover, and after a glucose challenge the Ebf1−/− animals reached serum glucose levels almost twice that of their wild-type counterparts. Measurement of circulating pancreatic hormones revealed normal or reduced insulin levels in the Ebf1−/− mice, whereas glucagon was significantly increased (up 1.7- to 8.5-fold). Metabolically the Ebf1−/− mice had increased O2 consumption, CO2 production, food and water intake, and activity. Markers for gluconeogenesis, however, were decreased in the Ebf1−/− mice compared with controls. In conclusion, the Ebf1-deficient animals exhibit defects in adipose tissue deposition with increased marrow adiposity and impaired glucose mobilization
    corecore