33 research outputs found
IONS FOR LHC: STATUS OF THE INJECTOR CHAIN
The LHC will, in addition to proton runs, be operated with Pb ions and provide collisions at energies of 5.5 TeV per nucleon pair, i.e. more than 1.1 PeV per event, to experiments. The transformation of CERN's ion injector complex (Linac3-LEIR-PS-SPS) to allow collision of ions in LHC in 2008 is well under way. The status of these modifications and the latest results of commissioning will be presented. The remaining challenges are reviewed
The CERN PS multi-turn extraction based on beam splittting in stable islands of transverse phase space: Design Report
Since 2001 considerable effort has been devoted to the study of a possible replacement of the continuous-transfer extraction mode from the PS to the SPS. Such an approach, called Multi-Turn Extraction (MTE), is based on capture of the beam inside stable islands of transverse phase space, generated by sextupoles and octupoles, thanks to a properly chosen tune variation. Both numerical simulations and measurements with beam were performed to understand the properties of this new extraction mode. The experimental study was completed at the end of 2004 and by the end of 2005 a scheme to implement this novel approach in the PS machine was defined and its performance assessed. This design report presents the outcome of the studies undertaken both in terms of technical issues as well as of resources necessary to implement the proposed scheme
CTF3 Design Report: Preliminary Phase
The design of CLIC is based on a two-beam scheme, where the short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP. In the first stage of the project, the "Preliminary Phase", the existing LIL linac and the EPA ring, both modified to suit the new requirements, are used to investigate the technique of frequency multiplication by means of interleaving bunches from subsequent trains. This report describes the design of this phase
The Compact Linear Collider (CLIC) - 2018 Summary Report
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years
Direct Drive and Eddy Current Septa Magnet Designs for CERN's PSB Extraction at 2 GeV
In the framework of the LIU project, new septa magnets have been designed between CERN's PS booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS and the eddy current PS injection septum together with a bumper at injection have been investigated using finite-element software. For the recombination magnets, an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements, a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper, and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modeling of the devices, the comparison of the performance of the present 1.4-GeV devices with the predictions for the upgraded 2-GeV devices, and the solutions retained to achieve the field requirements are described in this paper
Upgrades for the CERN PSB-to-PS Transfer at 2 GeV
The CERN PS Booster extraction energy will be upgraded from 1.4 to 2.0 GeV to alleviate the direct space charge tune shift in the PS. The focussing structure of the transfer line will be modified in order to better match the optics between the PSB and the PS. The optics of the PS at injection and, with it, of the transfer line can be adapted to reduce the continuous losses from the already injected and circulating beam bumped towards the septum. Experimental results of the optics optimisation and probing the injection kicker flat top are shown. Modifications of the recombination septa and the main horizontal bending magnet in the measurement line are presented
First implementation of transversely split proton beams in the CERN Proton Synchrotron for the fixed-target physics programme
A new extraction technique has been studied at the CERN Proton Synchrotron with a view of using it for the fixed-target physics programme at the Super Proton Synchrotron. The extraction scheme is based on advanced concepts of non-linear beam dynamics: prior to extraction a particle beam is split into several beamlets in a transverse plane by crossing a stable resonance, which allows extracting the beamlets over multiple turns. The principle of the extraction, the detail of its implementation, and the progress of the beam commissioning over the years are discussed here. More importantly, the results obtained during the first period of successful use for the physics programme are presented, focusing on the performance analysis of the novel extraction. Copyright CERN. Published by the EPLA under the terms of the Creative Commons Attribution 3.0 License (CC BY). Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI
Proposal of a Dummy Septum to Mitigate ring irradiation for the CERN PS Multi-Turn Extraction
High activation of the magnetic extraction septum of the CERN PS machine was observed due to the losses of the continuous beam extracted via the Multi-Turn Extraction (MTE) method. The resulting activation is however incompatible with safe operation so a mitigation measure was required and found, namely the installation of a passive dummy septum to protect the actual one seems to provide the required reduction in activation in the extraction area. The shielded dummy septum is intended to absorb particles during the rise time of the MTE extraction kickers, avoiding the beam impact on the blade of the active magnetic extraction septum. The principle of the proposed modifications of the PS layout will be presented together with the studies aimed at finalising the new configuration