86 research outputs found

    Biological nanomotors, driving forces of life

    Get PDF

    Une myosine à contre-sens

    Get PDF

    Drosophila melanogaster Myosin-18 Represents a Highly Divergent Motor with Actin Tethering Properties

    Get PDF
    The gene encoding Drosophila myosin-18 is complex and can potentially yield six alternatively spliced mRNAs. One of the major features of this myosin is an N-terminal PDZ domain that is included in some of the predicted alternatively spliced products. To explore the biochemical properties of this protein, we engineered two minimal motor domain (MMD)-like constructs, one that contains the N-terminal PDZ (myosin-18 M-PDZ) domain and one that does not (myosin-18 M-ΔPDZ). These two constructs were expressed in the baculovirus/Sf9 system. The results suggest that Drosophila myosin-18 is highly divergent from most other myosins in the superfamily. Neither of the MMD constructs had an actin-activated MgATPase activity, nor did they even bind ATP. Both myosin-18 M-PDZ and M-ΔPDZ proteins bound to actin with Kd values of 2.61 and 1.04 μm, respectively, but only about 50–75% of the protein bound to actin even at high actin concentrations. Unbound proteins from these actin binding assays reiterated the 60% saturation maximum, suggesting an equilibrium between actin-binding and non-actin-binding conformations of Drosophila myosin-18 in vitro. Neither the binding affinity nor the substoichiometric binding was significantly affected by ATP. Optical trapping of single molecules in three-bead assays showed short lived interactions of the myosin-18 motors with actin filaments. Combined, these data suggest that this highly divergent motor may function as an actin tethering protein

    Template-free 13-protofilament microtubule–MAP assembly visualized at 8 A resolution

    Get PDF
    Microtubule-associated proteins (MAPs) are essential for regulating and organizing cellular microtubules (MTs). However, our mechanistic understanding of MAP function is limited by a lack of detailed structural information. Using cryo-electron microscopy and single particle algorithms, we solved the 8 Å structure of doublecortin (DCX)-stabilized MTs. Because of DCX’s unusual ability to specifically nucleate and stabilize 13-protofilament MTs, our reconstruction provides unprecedented insight into the structure of MTs with an in vivo architecture, and in the absence of a stabilizing drug. DCX specifically recognizes the corner of four tubulin dimers, a binding mode ideally suited to stabilizing both lateral and longitudinal lattice contacts. A striking consequence of this is that DCX does not bind the MT seam. DCX binding on the MT surface indirectly stabilizes conserved tubulin–tubulin lateral contacts in the MT lumen, operating independently of the nucleotide bound to tubulin. DCX’s exquisite binding selectivity uncovers important insights into regulation of cellular MTs

    MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders:A mutation update

    Get PDF
    Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open-access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non-MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno-/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID-associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.</p

    Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids

    Get PDF
    Cadherin-23 is a component of early transient lateral links of the auditory sensory cells' hair bundle, the mechanoreceptive structure to sound. This protein also makes up the upper part of the tip links that control gating of the mechanoelectrical transduction channels. We addressed the issue of the molecular complex that anchors these links to the hair bundle F-actin core. By using surface plasmon resonance assays, we show that the cytoplasmic regions of the two cadherin-23 isoforms that do or do not contain the exon68-encoded peptide directly interact with harmonin, a submembrane PDZ (post-synaptic density, disc large, zonula occludens) domain-containing protein, with unusually high affinity. This interaction involves the harmonin Nter-PDZ1 supramodule, but not the C-terminal PDZ-binding motif of cadherin-23. We establish that cadherin-23 directly binds to the tail of myosin VIIa. Moreover, cadherin-23, harmonin and myosin VIIa can form a ternary complex, which suggests that myosin VIIa applies tension forces on hair bundle links. We also show that the cadherin-23 cytoplasmic region, harmonin and myosin VIIa interact with phospholipids on synthetic liposomes. Harmonin and the cytoplasmic region of cadherin-23, both independently and as a binary complex, can bind specifically to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which may account for the role of this phospholipid in the adaptation of mechanoelectrical transduction in the hair bundle. The distributions of cadherin-23, harmonin, myosin VIIa and PI(4,5)P2 in the growing and mature auditory hair bundles as well as the abnormal locations of harmonin and myosin VIIa in cadherin-23 null mutant mice strongly support the functional relevance of these interactions

    Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex

    Get PDF
    Background: The Wave complex activates the Arp2/3 complex, inducing actin polymerization in lamellipodia and membrane ruffles. The Wave complex is composed of five subunits, the smallest of which, Brick1/Hspc300 (Brk1), is the least characterized. We previously reported that, unlike the other subunits, Brk1 also exists as a free form. Principal Findings: Here we report that this free form of Brk1 is composed of homotrimers. Using a novel assay in which purified free Brk1 is electroporated into HeLa cells, we were able to follow its biochemical fate in cells and to show that free Brk1 becomes incorporated into the Wave complex. Importantly, incorporation of free Brk1 into the Wave complex was blocked upon inhibition of protein synthesis and incorporated Brk1 was found to associate preferentially with neosynthesized subunits. Brk1 depleted HeLa cells were found to bleb, as were Nap1, Wave2 or ARPC2 depleted cells, suggesting that this blebbing phenotype of Brk1 depleted cells is due to an impairment of the Wave complex function rather than a specific function of free Brk1. Blebs of Brk1 depleted cells were emitted at sites where lamellipodia and membrane ruffles were normally emitted. In Brk1 depleted cells, the electroporation of free Brk1 was sufficient to restore Wave complex assembly and to rescue the blebbing phenotype. Conclusion: Together these results establish that the free form of Brk1 is an essential precursor in the assembly of

    Etude cristallographique d'un anticorps anti-idiotope, E5.2

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 84749 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Essential “ankle” in the myosin lever arm

    No full text
    International audienc
    corecore