56 research outputs found
Horizontal and radial collector wells: simple tools for a complex problem
The capture of groundwater by horizontal wells (HWs) is an old but often overlooked technique. Practically all modeling techniques available in groundwater hydrology have been applied to HWs. This work compares analytical models with field data and investigates the influence of nonuniform screen inflow. The usefulness of a vertical well approximation is studied. A new MATLAB application, HORI, is presented for common analytical models. Analytical methods are found to reproduce drawdown around two radial collector wells (RCWs). Beyond the direct vicinity of the caisson, in particular, drawdown around an RCW can be approximated with a vertical well model
On the Propagation of Reaction Fronts in a Sandy Aquifer Over 20+ Years: Lessons From a Test Site in Northwestern Germany
Despite reduction measures, nitrate and aluminum concentrations remain high in aquifers in northwestern Europe. To evaluate the effectiveness of groundwater protection policies, the long-term fate of these contaminants in groundwater needs to be understood. The groundwater catchment of the Haren water works, NW Germany, was characterized hydrogeochemically in the late 1990s, which provides an opportunity to study the solute fronts over a two-decade period and conduct a post-audit of the predicted front movement. Results indicate that, despite a significant reduction of the atmospheric acid loads, the acidification of soil and groundwater at the forest site persists. Removal of sorbed aluminum is required to induce a noticeable improvement, which will take at least several decades. The unexpected appearance of nitrate at the site, caused by a land use change in 1998, highlights the need for long-term monitoring. Core data at the agricultural site show that the denitrification front has moved very little between 1998 and 2017, in accordance with previous forecasts. Denitrification by-products, mainly sulfate and nitrogen, have migrated from the upper into the lower aquifer. A reactive transport model demonstrated how the link between the regional groundwater flow, pyrite oxidation, and the temporal variability of the nitrate concentration in recharge water, as reconstructed from age tracers, result in the observed vertical distribution of sulfate and nitrogen. This study demonstrates how long-term monitoring, aided by model-based data interpretation, can be used to successfully study and predict the fate of contaminants in groundwater. © 2021. The Authors
Review: Horizontal, directionally drilled and radial collector wells
Horizontal wells play an often overlooked role in hydrogeology and aquifer remediation but can be an interesting option for many applications. This study reviews the constructional and hydraulic aspects that distinguish them from vertical wells. Flow patterns towards them are much more complicated than those for vertical wells, which makes their mathematical treatment more demanding. However, at some distance, the drawdown fields of both well types become practically identical, allowing simplified models to be used. Due to lower drawdowns, the yield of a horizontal well is usually higher than that of a vertical well, especially in thin aquifers of lower permeability, where they can replace several of the latter. The lower drawdown, which results in lower energy demand and slower ageing, and the centralized construction of horizontal wells can lead to lower operational costs, which can make them an economically feasible option
Expression of a Neuroendocrine Gene Signature in Gastric Tumor Cells from CEA 424-SV40 Large T Antigen-Transgenic Mice Depends on SV40 Large T Antigen
A large fraction of murine tumors induced by transgenic expression of SV40 large T antigen (SV40 TAg) exhibits a neuroendocrine phenotype. It is unclear whether SV40 TAg induces the neuroendocrine phenotype by preferential transformation of progenitor cells committed to the neuroendocrine lineage or by transcriptional activation of neuroendocrine genes. To address this question we analyzed CEA424-SV40 TAg-transgenic mice that develop spontaneous tumors in the antral stomach region. Immunohistology revealed expression of the neuroendocrine marker chromogranin A in tumor cells. By ELISA an 18-fold higher level of serotonin could be detected in the blood of tumor-bearing mice in comparison to nontransgenic littermates. Transcriptome analyses of antral tumors combined with gene set enrichment analysis showed significant enrichment of genes considered relevant for human neuroendocrine tumor biology. This neuroendocrine gene signature was also expressed in 424GC, a cell line derived from a CEA424-SV40 TAg tumor, indicating that the tumor cells exhibit a similar neuroendocrine phenotype also in vitro. Treatment of 424GC cells with SV40 TAg-specific siRNA downregulated expression of the neuroendocrine gene signature. SV40 TAg thus appears to directly induce a neuroendocrine gene signature in gastric carcinomas of CEA424-SV40 TAg-transgenic mice. This might explain the high incidence of neuroendocrine tumors in other murine SV40 TAg tumor models. Since the oncogenic effect of SV40 TAg is caused by inactivation of the tumor suppressor proteins p53 and RB1 and loss of function of these proteins is commonly observed in human neuroendocrine tumors, a similar mechanism might cause neuroendocrine phenotypes in human tumors
- …