15 research outputs found

    Novel Layered and 2D Materials for Functionality Enhancement of Contacts and Gas Sensors

    No full text
    Chemical gas sensors are widely-used electronic devices for detecting or measuring the density levels of desired gas species. In this study, materials with established or potential applications for gas sensors are treated. For the case of high-temperature applications (≈ 600 °C), semiconductor-based gas sensors suffer from rapid oxidation of the metallic ohmic contacts, the same cause-of-failure as for the general case of high-temperature semiconductor electronics. 4H-SiC is an ideal semiconductor for high-temperature applications. Ti3SiC2 is a known ohmic contact to 4H-SiC with the known two-step synthesis process of post-annealing of pre-deposited Ti/Al multilayers or sputter-deposition of Ti3SiC2 films at > 900 °C. Here, sputter-deposition of Ti on 4H-SiC at > 900 °C is presented as a novel single-step method for the synthesis of Ti3SiC2 ohmic contacts, based on a concurrent reaction between sputter-deposited Ti and 4HSiC. Ti3SiC2, similar to any other known ohmic contact, degrade rapidly in high-temperature oxidizing ambient. To try to overcome this obstacle, noble metal diffusion into Ti3SiC2 has been s studied with the goal to retain ohmic properties of Ti3SiC2 and harnessing oxidation resistivity of noble metals. A novel exchange intercalation between Ti3SiC2 and Au is discovered which results in the almost complete exchange of Si with Au giving rise to novel Ti3AuC2 and Ti3Au2C2. Ti3IrC2 is also synthesized through exchange intercalation of Ir into Ti3Au2C2. All the aforementioned phases showed ohmic properties to 4H-SiC. This technique is also studied based on Ti2AlC and Ti3AlC2 resulting in the synthesis of novel Ti2Au2C and Ti3Au2C2, respectively. Using Ti3AuC2 and an Au/IrOx capping layer, an ohmic contact was manufactured, which maintained ohmic properties and showed no structural defects after 1000 h of aging at 600 °C air. Ti3SiC2 is a member of a large family of materials known as Mn+1AXn phases. While exchange reactions of Si (or Al) planes in Ti3SiC2 (Ti2AlC and Ti3AlC2) is presented here, a world-wide research already exists on chemical removal of the same atomic planes from different Mn+1AXn phases and the synthesis of Mn+1Xn sheets known as MXenes. I performed a theoretical study regarding simulation of electronic and structural properties of more than120 different possible MXene phases. The results show that some MXene phases, when terminated by particular gas species, turn into Dirac materials. That is, they possess massless Dirac fermions with different properties compared to graphene such as higher number of Dirac points at the Fermi level, giant spin orbit splitting, and preserved 2D-type electronic properties by extending the dimensionality. The general substantial change of the electronic properties of MXenes under different gas adsorption configurations stands out and can thus be harnessed for sensing applications. Growth of monolayer iron oxide on porous Pt sensing layers is another novel approach used in this study for applying the unique properties of 2D materials for gas sensors. A low temperature shift in CO oxidation characteristics is presented. The approach is similar to that previously reported using bulk single crystal Pt substrate, the latter being an unrealistic model for sensors and catalysts. Monolayer-coated Pt sensing layers were fabricated as the metal component of a metal oxide semiconductor (MOS) capacitor device, whereby the electrical response of the MOS device could be used to map out the catalytic properties of the sensing layer. The monolayer-coated Pt surface showed to be stable with retained improved catalytic properties for > 200 h. The MOS device measurements are here utilized as a handy method for in-situ monitoring of the surface chemical properties of the monolayer-coated Pt and the approach is highly functional for use and characterization of monolayer coatings of widely used sensingor catalytic layers

    Applicability of MOS structures in monitoring catalytic properties, as exemplified for monolayer-iron-oxide-coated porous platinum films

    No full text
    Metal Oxide Semiconductor (MOS) capacitor devices comprised of monolayer iron oxide-coated as well as non-coated polycrystalline Pt deposited on oxidized silicon carbide substrates have been fabricated and their usefulness as realistic model systems in catalyst studies development was evaluated. The CO oxidation characteristics of both iron oxide- and non-coated Pt catalysts were investigated using mass spectrometry, monitoring the carbon dioxide production rate for different combinations of carbon monoxide (CO) and oxygen concentrations at various temperatures. Additionally, the output capacitance of the MOS model catalysts was recorded for each individual CO oxidation activity. A low-temperature shift in CO oxidation characteristics for the monolayer-coated compared to the non-coated Pt catalysts was observed, similar to that previously reported for monolayer iron oxide grown on single-crystalline Pt substrates. A strong correlation between the output capacitance of the MOS structures and the CO oxidation characteristics was found for both monolayer- and non-coated model catalysts. Furthermore, the devices exhibit retained MOS electrical output and CO oxidation characteristics as well as an unaffected catalyst surface composition, as confirmed by photoelectron spectroscopy, even after 200 h of continuous model catalyst operation. In addition to the implications on practical applicability of monolayer iron oxide coating on widely used polycrystalline Pt films in real-world catalysts and sensors, the findings also point to new possibilities regarding the use of MOS model systems for in situ characterization, high throughput screening, and tailoring of e.g. catalyst- and fuel-cell-electrode materials for specific applications. (C) 2016 Elsevier Inc. All rights reserved.Funding Agencies|VINN Excellence Center in research and innovation on Functional Nanoscale Materials (FunMat) by the Swedish Governmental Agency for Innovation Systems (VINNOVA); Swedish Research Council (VR) [2015-04062]; Swedish Foundation for Strategic Research (SSF) through the Future Research Leaders 5 program</p

    Phase formation of nanolaminated Mo2AuC and Mo-2(Au1-xGax)(2)C by a substitutional reaction within Au-capped Mo2GaC and Mo2Ga2C thin films

    No full text
    Au-containing nanolaminated carbides Mo2AuC and Mo-2(Au1-xGax)(2)C were synthesized by a thermally induced substitutional reaction in Mo2GaC and Mo2Ga2C, respectively. The Au substitution of the Ga layers in the structures was observed using cross-sectional high-resolution scanning transmission electron microscopy. Expansion of c lattice parameters was also observed in the Au-containing phases compared to the original phases. Energy dispersive spectroscopy detected residual Ga in Au-substituted layers of both phases with a peculiar Ga in-plane ordering for Au : Ga = 9 : 1 ratio along the Au-Ga layers in Mo-2(Au1-xGax)(2)C. These results indicate a generalization of the Au substitution reaction for the A elements in MAX phases.Funding Agencies|Swedish Foundation for Strategic Research (SSF) through the Synergy Grant FUNCASE; Swedish Foundation for Strategic Research (SSF) through the Research Infrastructure Fellow program [RIF14-0074]; VINN Excellence Center (VINNOVA) in research and innovation on Functional Nanoscale Materials (FunMat) by Swedish Governmental Agency for Innovation Systems; Knut and Alice Wallenberg (KAW) Foundation [KAW 2015.0043]; Linkoping Ultra Electron Microscopy Laboratory; Swedish Research Council [621-2012-4425, 642-2013-8020, 2013-4018, 2016-04412]</p

    Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2

    No full text
    Incorporation of layers of noble metals in non-van der Waals layered materials may be used to form novel layered compounds. Recently, we demonstrated a high-temperature-induced exchange process of Au with Si in the layered phase Ti3SiC2, resulting in the formation of Ti3AuC2 and Ti3Au2C2. Here, we generalize this technique showing that Au/Ti2AlC and Au/Ti3AlC2 undergo an exchange reaction at 650 [degree]C to form Ti2Au2C and Ti3Au2C2 and determine their structures by electron microscopy, X-ray diffraction, and ab initio calculations. These results imply that noble-metal-containing layered phases should be possible to synthesize in many systems. The metal to be introduced should be inert to the transition-metal carbide layers, and exhibit negative heat of mixing with the initial A element in a liquid phase or two-phase liquid/solid region at the annealing temperature.Funding agencies: VINN Excellence Center in research and innovation on Functional Nanoscale Materials (FunMat) by the Swedish Governmental Agency for Innovation Systems; Swedish Government Strategic Research Areas in Materials Science on Functional Materials at Linkoping U</p

    Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC

    No full text
    The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 degrees C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.Funding Agencies|VINN Excellence Center in research and innovation on Functional Nanoscale Materials (FunMat) by the Swedish Governmental Agency for Innovation Systems (VINNOVA); Swedish Government Strategic Research Areas in Materials Science on Functional Materials at Linkoping University [2009 00971]; Swedish Foundation for Strategic Research through the Future Research Leaders 5 Program; Synergy Grant FUNCASE, Functional Carbides and Advanced Surface Engineering; e-Science Research Centre (SeRC); Swedish Research Council (VR) [2014-4750]; European Research Council under the European Community [335383]; Knut and Alice Wallenberg Foundation</p

    Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)(2)AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)(2)GaC

    No full text
    The magnetic properties of the new phase (Cr0.5Mn0.5)(2)AuC are compared to the known MAX-phase (Cr0.5Mn0.5)(2)GaC, where the former was synthesized by thermally induced substitution reaction of Au for Ga in (Cr0.5Mn0.5)(2)GaC. The reaction introduced a lattice expansion of similar to 3% along the c-axis, an enhancement of the coercive field from 30 mT to 140 mT, and a reduction of the Curie temperature and the saturation magnetization. Still, (Cr0.5Mn0.5)(2)AuC displays similar features in the magnetic field-and temperature-dependent magnetization curves as previously reported magnetic MAX phases, e.g., (Cr0.5Mn0.5)(2)GaC and (Mo0.5Mn0.5)(2)GaC. Thework suggests a pathway for tuning the magnetic properties of MAX phases. (c) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.Funding Agencies|Swedish Foundation for Strategic Research (Stiftelsen for Strategisk Forskning, SSF) through the Synergy Grant FUNCASE; Knut and Alice Wallenberg (KAW) Foundation [KAW 2015.0043]; Ministry of Education and Science of the Russian Federation [K3-2017-022]; Swedish Research Council (Vetenskapsradet, VR) [621-2012-4425, 642-2013-8020, 2017-03909]; Swedish Government Strategic Research Area (SFO) in Materials Science on Advanced Functional Material (MatLiU AFM) [2009-00971]; DFG [SA 3095/2-1]</p
    corecore