49 research outputs found

    Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging

    Get PDF
    Organic aerosol particles (OA) play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is highly important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states, however, diffusion rates of small molecules such as water are not limited by these high viscosities. Direct observational evidence of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles were not available until recently; and techniques that are able to dynamically quantify and track viscosity changes during atmospherically relevant processes are still unavailable for atmospheric aerosols. Here we report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity. We show that microviscosity in ozonated oleic acid droplets and secondary organic aerosol (SOA) particles formed by ozonolysis of myrcene increases substantially with decreasing humidity and atmospheric oxidative aging processes. Furthermore, we found unexpected heterogeneities of microviscosity inside individual aerosol particles. The results of this study enhance our understanding of organic aerosol processes on microscopic scales and may have important implications for the modeling of atmospheric aerosol growth, composition and interactions with trace gases and clouds.Engineering and Physical Sciences Research Council (Career Acceleration Fellowship (Grant ID: EP/I003983/1), Prize studentship), Natural Environment Research Council (Studentship NE/J500070/1), European Research Council (Grant ID: 279405), Max Planck Society, European Union project PEGASOS (Grant ID: 265148

    Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles

    Get PDF
    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo\textit{in vivo} drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.European Research Council (Grant ID: 279405), Science and Technology Facilities Council (Central Laser Facility, Grant ID: LSF1207), Engineering and Physical Sciences Research Council (Grant ID: EP/I003983/1), Natural Environmental Research Council (Grant ID: NE/J500070/1

    Natural coagulates for wastewater treatment; a review for application and mechanism

    Get PDF
    The increase of water demand and wastewater generation is among the global concerns in the world. The less effective management of water sources leads to serious consequences, the direct disposal of untreated wastewater is associated with the environmental pollution, elimination of aquatic life and the spread of deadly epidemics. The flocculation process is one of the most important stages in water and wastewater treatment plants, wherein this phase the plankton, colloidal particles, and pollutants are precipitated and removed. Two major types of coagulants are used in the flocculation process included the chemical and natural coagulants. Many studies have been performed to optimize the flocculation process while most of these studies have confirmed the hazardous effects of chemical coagulants utilization on the ecosystem. This chapter reviews a summary of the coagulation/flocculation processes using natural coagulants as well as reviews one of the most effective natural methods of water and wastewater treatment

    Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging

    Get PDF
    Organic aerosol particles (OA) play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is highly important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states, however, diffusion rates of small molecules such as water are not limited by these high viscosities. Direct observational evidence of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles were not available until recently; and techniques that are able to dynamically quantify and track viscosity changes during atmospherically relevant processes are still unavailable for atmospheric aerosols. Here we report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity. We show that microviscosity in ozonated oleic acid droplets and secondary organic aerosol (SOA) particles formed by ozonolysis of myrcene increases substantially with decreasing humidity and atmospheric oxidative aging processes. Furthermore, we found unexpected heterogeneities of microviscosity inside individual aerosol particles. The results of this study enhance our understanding of organic aerosol processes on microscopic scales and may have important implications for the modeling of atmospheric aerosol growth, composition and interactions with trace gases and clouds.Engineering and Physical Sciences Research Council (Career Acceleration Fellowship (Grant ID: EP/I003983/1), Prize studentship), Natural Environment Research Council (Studentship NE/J500070/1), European Research Council (Grant ID: 279405), Max Planck Society, European Union project PEGASOS (Grant ID: 265148
    corecore