250 research outputs found

    NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    The contractor's report contains all sixteen final reports prepared by the participants in the 1989 Summer Faculty Fellowship Program. Reports describe research projects on a number of different topics. Interface software, metal corrosion, rocket triggering lightning, automatic drawing, 60-Hertz power, carotid-cardiac baroreflex, acoustic fields, robotics, AI, CAD/CAE, cryogenics, titanium, and flow measurement are discussed

    Clinical surveillance of thrombotic microangiopathies in Scotland, 2003-2005

    Get PDF
    The prevalence, incidence and outcomes of haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopaenic purpura (TTP) are not well established in adults or children from prospective studies. We sought to identify both outcomes and current management strategies using prospective, national surveillance of HUS and TTP, from 2003 to 2005 inclusive. We also investigated the links between these disorders and factors implicated in the aetiology of HUS and TTP including infections, chemotherapy, and immunosuppression. Most cases of HUS were caused by verocytotoxin-producing Escherichia coli (VTEC), of which serotype O157 predominated, although other serotypes were identified. The list of predisposing factors for TTP was more varied although use of immunosuppressive agents and severe sepsis, were the most frequent precipitants. The study demonstrates that while differentiating between HUS and TTP is sometimes difficult, in most cases the two syndromes have quite different predisposing factors and clinical parameters, enabling clinical and epidemiological profiling for these disorders

    Tele-Supervised Adaptive Ocean Sensor Fleet

    Get PDF
    The Tele-supervised Adaptive Ocean Sensor Fleet (TAOSF) is a multi-robot science exploration architecture and system that uses a group of robotic boats (the Ocean-Atmosphere Sensor Integration System, or OASIS) to enable in-situ study of ocean surface and subsurface characteristics and the dynamics of such ocean phenomena as coastal pollutants, oil spills, hurricanes, or harmful algal blooms (HABs). The OASIS boats are extended- deployment, autonomous ocean surface vehicles. The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. One feature of TAOSF is the adaptive re-planning of the activities of the OASIS vessels based on sensor input ( smart sensing) and sensorial coordination among multiple assets. The architecture also incorporates Web-based communications that permit control of the assets over long distances and the sharing of data with remote experts. Autonomous hazard and assistance detection allows the automatic identification of hazards that require human intervention to ensure the safety and integrity of the robotic vehicles, or of science data that require human interpretation and response. Also, the architecture is designed for science analysis of acquired data in order to perform an initial onboard assessment of the presence of specific science signatures of immediate interest. TAOSF integrates and extends five subsystems developed by the participating institutions: Emergent Space Tech - nol ogies, Wallops Flight Facility, NASA s Goddard Space Flight Center (GSFC), Carnegie Mellon University, and Jet Propulsion Laboratory (JPL). The OASIS Autonomous Surface Vehicle (ASV) system, which includes the vessels as well as the land-based control and communications infrastructure developed for them, controls the hardware of each platform (sensors, actuators, etc.), and also provides a low-level waypoint navigation capability. The Multi-Platform Simulation Environment from GSFC is a surrogate for the OASIS ASV system and allows for independent development and testing of higher-level software components. The Platform Communicator acts as a proxy for both actual and simulated platforms. It translates platform-independent messages from the higher control systems to the device-dependent communication protocols. This enables the higher-level control systems to interact identically with heterogeneous actual or simulated platforms

    Fundamental limitations to information transfer in accelerated frames

    Get PDF
    We study communication between an inertial observer and one of two causally-disconnected counter accelerating observers. We will restrict the quantum channel considering inertial-to-accelerated bipartite classical and quantum communication over different sets of Unruh modes (single-rail or dual-rail encoding). We find that the coherent information (and therefore, the amount of entanglement that can be generated via state merging protocol) in this strongly restricted channel presents some interesting monogamy properties between the inertial and only one of the accelerated observers if we take a fixed choice of the Unruh mode used in the channel. The optimization of the controllable parameters is also studied and we find that they deviate from the values usually employed in the literature.Comment: 7 pages, 6 figure

    Palpable pediatric thyroid abnormalities – diagnostic pitfalls necessitate a high index of clinical suspicion: a case report

    Get PDF
    A 12-year-old girl presented with a 4 year history of an enlarged, firm thyroid gland. On exam, her thyroid was firm and fixed and an enlarged cervical lymph node was palpable as well. Though a thyroid ultrasound prior to referral was read as thyroiditis, clinical suspicion for thyroid carcinoma mandated continued investigation. The diagnosis of papillary thyroid cancer was established and her workup revealed lymph node metastases as well as a tremendous burden of pulmonary metastases. Pediatric thyroid cancer is extremely rare, but often presents with aggressive disease. Palpable thyroid abnormalities in an individual under 20-years-old should be viewed with suspicion and should be thoroughly investigated to rule out malignancy even in the face of negative diagnostic procedures. Though pediatric papillary thyroid cancer often presents with loco-regional and even distant metastatic disease, mortality rates in follow-up for as long as 20 years are very favorable

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    Estimating soil carbon in Southern Amazon late holocene anthropogenic landscapes containing archaeological 'Dark Earth' Anthrosols.

    Get PDF
    Amazonian dark earths (ADE) are anthropogenic soils with concentrated carbon and nutrients that formed mainly during the latter half of the Holocene, prior to the arrival of Europeans, but are still forming on a more limited scale up to the present in indigenous communities. ADE, a result of domestic, economic, and agricultural activities in and around human settlements, are noted for their extraordinary fertility and resilience and for the significant quantities of organic carbon, much in the form of charcoal. The deepest and most extensive areas of ADE are generally located on the bluffs of major rivers adjacent to floodplains, but significant areas of ADE have also been found in floodplains and in headwater and interfluvial areas. Our research aims to shed light on the distribution of modified soils in distinct regions of the Amazon in relation to landforms and the environment. Research on ADE has led to the development of a 'biochar' industry that promotes the incorporation of charcoal into the soil for the dual purpose of improving fertility and sequestering carbon, but the potential for large-scale carbon storage in anthropogenic soils is unclear, in part because the amount of carbon already stored in ADE is unknown as there is a notable lack of research attempting to quantify the carbon over the scale of a site or region. We undertook this challenge in the Upper Xingu region of southeastern Amazonia in partnership with the local Kuikuro indigenous community who have shared their valuable traditional knowledge on the creation and management of ADE. We used data from over 3500 soil samples from diverse contexts, both ancient and modern, that we collected and analyzed over the past two decades for organic carbon and a range of other chemical and physical properties that can serve as proxies for soil modification by humans. Dark earth samples from profiles down to 1 m depth in archaeological sites ranged from 20% to 150% more OC than unmodified forest soil and dark earth profiles in current and historic villages ranged from 20-90% more organic carbon. We used the results from soil sample transects to estimate the carbon in landuse zones within and surrounding modern, historic, and ancient settlement sites. In continuing work, we are attempting to use satellite remote sensing and AI to extrapolate our results across a larger region

    Functional Characterization of the Frost Gene in Drosophila melanogaster: Importance for Recovery from Chill Coma

    Get PDF
    BACKGROUND: Almost all animals, including insects, need to adapt to temperature fluctuations. The molecular basis of thermal adaptation is not well understood, although a number of candidate genes have been proposed. However, a functional link between candidate genes and thermal tolerance has rarely been established. The gene Frost (Fst) was first discovered when Drosophila flies were exposed to cold stress, but the biological function(s) of Fst has so far not been characterized. Because Fst is up-regulated after a cold stress, we tested whether it was essential for chill-coma recovery. METHODOLOGY/PRINCIPAL FINDINGS: A marked increase in Fst expression was detected (by RT-PCR) during recovery from cold stress, peaking at 42-fold after 2 h. The GAL4/UAS system was used to knock down expression of Fst and recovery ability was assessed in transgenic adults following 12 h of chill coma at 0 degrees C. The ability to recover from cold stress (short-, medium- and long-term) was significantly altered in the transgenic adults that had Fst silenced. These findings show that Fst plays an essential role in the recovery from chill coma in both males and females. CONCLUSIONS/SIGNIFICANCE: The Frost gene is essential for cold tolerance in Drosophila melanogaster and may play an important role in thermal adaptation
    corecore