24 research outputs found

    Representation of tropical deep convection in atmospheric models - Part 1 : Meteorology and comparison with satellite observations

    Get PDF
    Published under Creative Commons Licence 3.0. Original article can be found at : http://www.atmospheric-chemistry-and-physics.net/ "The author's copyright for this publication is transferred to University of Hertfordshire".Fast convective transport in the tropics can efficiently redistribute water vapour and pollutants up to the upper troposphere. In this study we compare tropical convection characteristics for the year 2005 in a range of atmospheric models, including numerical weather prediction (NWP) models, chemistry transport models (CTMs), and chemistry-climate models (CCMs). The model runs have been performed within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The characteristics of tropical convection, such as seasonal cycle, land/sea contrast and vertical extent, are analysed using satellite observations as a benchmark for model simulations. The observational datasets used in this work comprise precipitation rates, outgoing longwave radiation, cloud-top pressure, and water vapour from a number of independent sources, including ERA-Interim analyses. Most models are generally able to reproduce the seasonal cycle and strength of precipitation for continental regions but show larger discrepancies with observations for the Maritime Continent region. The frequency distribution of high clouds from models and observations is calculated using highly temporally-resolved (up to 3-hourly) cloud top data. The percentage of clouds above 15 km varies significantly between the models. Vertical profiles of water vapour in the upper troposphere-lower stratosphere (UTLS) show large differences between the models which can only be partly attributed to temperature differences. If a convective plume reaches above the level of zero net radiative heating, which is estimated to be ~15 km in the tropics, the air detrained from it can be transported upwards by radiative heating into the lower stratosphere. In this context, we discuss the role of tropical convection as a precursor for the transport of short-lived species into the lower stratosphere.Peer reviewe

    Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5

    Get PDF
    One of the major globally relevant systematic biases in previous generations of climate models has been an equatorward bias in the latitude of the Southern Hemisphere (SH) mid‐latitude tropospheric eddy driven westerly jet. The far reaching implications of this for Southern Ocean heat and carbon uptake and Antarctic land and sea ice are key reasons why addressing this bias is a high priority. It is therefore of primary importance to evaluate the representation of the SH westerly jet in the latest generation of global climate and earth‐system models that comprise the Coupled Model Intercomparison Project Phase 6 (CMIP6). In this paper we assess the representation of major indices of SH extratropical atmospheric circulation in CMIP6 by comparison against both observations and the previous generation of CMIP5 models. Indices assessed are the latitude and speed of the westerly jet, variability of the Southern Annular Mode (SAM) and representation of the Amundsen Sea Low (ASL). These are calculated from the historical forcing simulations of both CMIP5 and CMIP6 for time periods matching available observational and reanalysis datasets. From the 39 CMIP6 models available at the time of writing there is an overall reduction in the equatorward bias of the annual mean westerly jet from 1.9° in CMIP5 to 0.4° in CMIP6 and from a seasonal perspective the reduction is clearest in austral spring and summer. This is accompanied by a halving of the bias of SAM decorrelation timescales compared to CMIP5. However, no such overall improvements are evident for the ASL

    THE AMUNDSEN SEA LOW Variability, Change, and Impact on Antarctic Climate

    Get PDF
    The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases

    Tropical convective transport and the Walker circulation

    Get PDF
    We introduce a methodology to visualise rapid vertical and zonal tropical transport pathways. Using prescribed sea-surface temperatures in four monthly model integrations for 2005, we characterise preferred transport routes from the troposphere to the stratosphere in a high resolution climate model. Most efficient transport is modelled over the Maritime Continent (MC) in November and February, i.e., boreal winter. In these months, the ascending branch of the Walker Circulation over the MC is formed in conjunction with strong deep convection, allowing fast transport into the stratosphere. In the model the upper tropospheric zonal winds associated with the Walker Circulation are also greatest in these months in agreement with ERA-Interim reanalysis data. We conclude that the Walker circulation plays an important role in the seasonality of fast tropical transport from the lower and middle troposphere to the upper troposphere and so impacts at the same time the potential supply of surface emissions to the tropical tropopause layer (TTL) and subsequently to the stratosphere

    Inclusion of mountain wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry-climate model

    Get PDF
    An important source of polar stratospheric clouds (PSCs), which play a crucial role in controlling polar stratospheric ozone depletion, is from the temperature fluctuations induced by mountain waves. However, this formation mechanism is usually missing in chemistry–climate models because these temperature fluctuations are neither resolved nor parameterised. Here, we investigate the representation of stratospheric mountain-wave-induced temperature fluctuations by the UK Met Office Unified Model (UM) at climate scale and mesoscale against Atmospheric Infrared Sounder satellite observations for three case studies over the Antarctic Peninsula. At a high horizontal resolution (4 km) the regional mesoscale configuration of the UM correctly simulates the magnitude, timing, and location of the measured temperature fluctuations. By comparison, at a low horizontal resolution (2.5° × 3.75°) the global climate configuration fails to resolve such disturbances. However, it is demonstrated that the temperature fluctuations computed by a mountain wave parameterisation scheme inserted into the climate configuration (which computes the temperature fluctuations due to unresolved mountain waves) are in relatively good agreement with the mesoscale configuration responses for two of the three case studies. The parameterisation was used to include the simulation of mountain-wave-induced PSCs in the global chemistry–climate configuration of the UM. A subsequent sensitivity study demonstrated that regional PSCs increased by up to 50% during July over the Antarctic Peninsula following the inclusion of the local mountain-wave-induced cooling phase

    Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling

    No full text
    Multidecadal meteorological station records and microwave backscatter time-series from the SeaWinds scatterometer onboard QuikSCAT (QSCAT) were used to calculate temporal and spatial trends in surface melting conditions on the Antarctic Peninsula (AP). Four of six long-term station records showed strongly positive and statistically significant trends in duration of melting conditions, including a 95% increase in the average annual positive degree day sum (PDD) at Faraday/Vernadsky, since 1948. A validated, threshold-based melt detection method was employed to derive detailed melt season onset, extent, and duration climatologies on the AP from enhanced resolution QSCAT data during 1999–2009. Austral summer melt on the AP was linked to regional- and synoptic-scale atmospheric variability by respectively correlating melt season onset and extent with November near-surface air temperatures and the October–January averaged index of the Southern Hemisphere Annular Mode (SAM). The spatial pattern, magnitude, and interannual variability of AP melt from observations was closely reproduced by simulations of the regional model RACMO2. Local discrepancies between observations and model simulations were likely a result of the QSCAT response to, and RACMO2 treatment of, ponded surface water, and the relatively crude representation of coastal climate in the 27 km RACMO2 grid

    Tropical deep convection and its impact on composition in global and mesoscale models - Part 2: Tracer transport

    Get PDF
    The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP), chemistry transport, and climate chemistry models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short lived tracers (with a lifetime of 6 hours) within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to differ between the models, even among those which source their forcing data from the same NWP model (ECMWF). The differences are less pronounced for longer lived tracers, however they could have implications for the modelling of the halogen burden of the lowermost stratosphere through species such as bromoform, or for the transport of short lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are found to be strongly influenced by the convective transport parameterisations, and boundary layer mixing parameterisations of the models. The location of rapid transport into the upper troposphere is similar among the models, and is mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, none of the models indicates significant enhancement in upward transport over western Africa. The mean mixing ratios of an idealised CO like tracer in the upper tropical troposphere are found to be sensitive to the surface CO mixing ratios in the regions with the most active convection, revealing the importance of correctly modelling both the location of convective transport and the geographical pollutant emission patterns

    Root cause analysis to identify medication and non-medication strategies to prevent infection-related hospitalizations from Australian residential aged care services

    Get PDF
    Infections are leading causes of hospitalizations from residential aged care services (RACS), which provide supported accommodation for people with care needs that can no longer be met at home. Preventing infections and early and effective management are important to avoid unnecessary hospital transfers, particularly in the Australian setting where new quality standards require RACS to minimize infection-related risks. The objective of this study was to examine root causes of infection-related hospitalizations from RACS and identify strategies to limit infections and avoid unnecessary hospitalizations. An aggregate root cause analysis (RCA) was undertaken using a structured local framework. A clinical nurse auditor and clinical pharmacist undertook a comprehensive review of 49 consecutive infection-related hospitalizations from 6 RACS. Data were collected from nursing progress notes, medical records, medication charts, hospital summaries, and incident reports using a purpose-built collection tool. The research team then utilized a structured classification system to guide the identification of root causes of hospital transfers. A multidisciplinary clinical panel assessed the root causes and formulated strategies to limit infections and hospitalizations. Overall, 59.2% of hospitalizations were for respiratory, 28.6% for urinary, and 10.2% for skin infections. Potential root causes of infections included medications that may increase infection risk and resident vaccination status. Potential contributors to hospital transfers included possible suboptimal selection of empirical antimicrobial therapy, inability of RACS staff to establish on-site intravenous access for antimicrobial administration, and the need to access subsidized medical services not provided in the RACS (e.g., radiology and pathology). Strategies identified by the panel included medication review, targeted bundles of care, additional antimicrobial stewardship initiatives, earlier identification of infection, and models of care that facilitate timely access to medical services. The RCA and clinical panel findings provide a roadmap to assist targeting services to prevent infection and limit unnecessary hospital transfers from RACS.Janet K. Sluggett, Samanta Lalic, Sarah M. Hosking, Brett Ritchie, Jennifer McLoughlin, Terry Shortt, Leonie Robson, Tina Cooper, Kelly A. Cairns, Jenni Ilomäki, Renuka Visvanathan, and J. Simon Bel

    Root cause analysis of fall-related hospitalisations among residents of aged care services

    No full text
    Background: Fall-related hospitalisations from residential aged care services (RACS) are distressing for residents and costly to the healthcare system. Strategies to limit hospitalisations include preventing injurious falls and avoiding hospital transfers when falls occur. Aims: To undertake a root cause analysis (RCA) of fall-related hospitalisations from RACS and identify opportunities for fall prevention and hospital avoidance. Methods: An aggregated RCA of 47 consecutive fall-related hospitalisations for 40 residents over a 12-month period at six South Australian RACS was undertaken. Comprehensive data were extracted from RACS records including nursing progress notes, medical records, medication charts, hospital summaries and incident reports by a nurse clinical auditor and clinical pharmacist. Root cause identification was performed by the research team. A multidisciplinary expert panel recommended strategies for falls prevention and hospital avoidance. Results: Overall, 55.3% of fall-related hospitalisations were among residents with a history of falls. Among all fall-related hospitalisations, at least one high falls risk medication was administered regularly prior to hospitalisation. Potential root causes of falling included medication initiations and dose changes. Root causes for hospital transfers included need for timely access to subsidised medical services or radiology. Strategies identified for avoiding hospitalisations included pharmacy-generated alerts when medications associated with an increased risk of falls are initiated or changed, multidisciplinary audit and feedback of falls risk medication use and access to subsidised mobile imaging services. Conclusions: This aggregate RCA identified a range of strategies to address resident and system-level factors to minimise fall-related hospitalisations.Janet K. Sluggett, Samanta Lalic, Sarah M. Hosking, Jenni Ilomӓki, Terry Shortt, Jennifer McLoughlin, Solomon Yu, Tina Cooper, Leonie Robson, Eleanor Van Dyk, Renuka Visvanathan, J. Simon Bel
    corecore