563 research outputs found
Endothelial preconditioning by transient oxidative stress reduces inflammatory responses of cultured endothelial cells to TNF-α
Brief episodes of ischemia can render an organ resistant to subsequent severe ischemia. This ‘ischemic preconditioning’ is ascribed to various mechanisms, including oxidative stress. We investigated whether preconditioning exists on an endothelial level. Human umbilical vein endothelial cells (HUVECs) were transiently confronted with oxidative stress (1 mM H2O2, 5 min). Adhesion molecules ICAM-1 and E-selectin and release of cytokines IL-6 and IL-8 to subsequent stimulation with TNF-α (2.5 ng/ml, 4 h) were measured (flow cytometry and immunoassay), as were nuclear translocation of the transcription factor NFkB (Western blotting, confocal microscopy) and redox status of HUVECs (quantification of glutathione by HPLC). TNF-α elevated IL-6 in the cell supernatant from 8.8 ± 1 to 41 ± 3 pg/ml and IL-8 from 0.5 ± 0.03 to 3 ± 0.2 ng/ml. ICAM-1 was increased threefold and E-selectin rose eightfold. Oxidative stress (decrease of glutathione by 50%) reduced post-TNF-α levels of IL-6 to 14 ± 3 and IL-8 to 1 ± 0.2; the rise of ICAM-1 was completely blocked and E-selectin was only doubled. The anti-inflammatory effects of preconditioning via oxidative stress were paralleled by reduction of the translocation of NFkB on stimulation with TNF-α, and antagonized by the intracellular radical scavenger N-acetylcysteine. ‘Anti-inflammatory preconditioning’ of endothelial cells by oxidative stress may account for the inhibitory effects of preconditioning on leukocyte adhesion in vivo
Spatiotemporal patterns of macrophage migration inhibitory factor (Mif) expression in the mouse placenta
<p>Abstract</p> <p>Background</p> <p>Macrophage migration inhibitory factor (MIF) has special pro-inflammatory roles, affecting the functions of macrophages and lymphocytes and counter-regulating the effects of glucocorticoids on the immune response. The conspicuous expression of MIF during human implantation and early embryonic development also suggests this factor acts in reproductive functions. The overall goal of this study was to evaluate Mif expression by trophoblast and embryo placental cells during mouse pregnancy.</p> <p>Methods</p> <p>Mif was immunolocalized at implantation sites on gestation days (gd) 7.5, 10.5, 13.5 and 17.5. Ectoplacental cones and fetal placentas dissected from the maternal tissues were used for Western blotting and qRT-PCR assays on the same gestation days.</p> <p>Results</p> <p>During the post-implantation period (gd7.5), trophoblast giant cells showed strong Mif reactivity. In later placentation phases (gds 10.5-17.5), Mif appeared to be concentrated in the junctional zone and trophoblast giant cells. Mif protein expression increased significantly from gd7.5 to 10.5 (p = 0.005) and from gd7.5 to 13.5 (p = 0.03), remaining at high concentration as gestation proceeded. Higher mRNA expression was found on gd10.5 and was significantly different from gd13.5 (p = 0.048) and 17.5 (p = 0.009).</p> <p>Conclusions</p> <p>The up-regulation of Mif on gd10.5 coincides with the stage in which the placenta assumes its three-layered organization (giant cells, spongiotrophoblast and labyrinth zones), fetal blood circulation begins and population of uNK cells reaches high proportions at the maternal counter part of the placenta, suggesting that Mif may play a role in either the placentation or in the adaptation of the differentiated placenta to the uterus or still in gestational immunomodulatory responses. Moreover, it reinforces the possibility of specific activities for Mif at the maternal fetal interface.</p
Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment
Gene-expression signature-based disease classification and clinical outcome prediction has not been widely introduced in clinical medicine as initially expected, mainly due to the lack of extensive validation needed for its clinical deployment. Obstacles include variable measurement in microarray assay, inconsistent assay platform, analytical requirement for comparable pair of training and test datasets, etc. Furthermore, as medical device helping clinical decision making, the prediction needs to be made for each single patient with a measure of its reliability. To address these issues, there is a need for flexible prediction method less sensitive to difference in experimental and analytical conditions, applicable to each single patient, and providing measure of prediction confidence. The nearest template prediction (NTP) method provides a convenient way to make class prediction with assessment of prediction confidence computed in each single patient's gene-expression data using only a list of signature genes and a test dataset. We demonstrate that the method can be flexibly applied to cross-platform, cross-species, and multiclass predictions without any optimization of analysis parameters
Interferon-gamma alters the phagocytic activity of the mouse trophoblast
Interferon-gamma (IFN-gamma) mediates diverse functions in bone marrow-derived phagocytes, including phagocytosis and microbe destruction. This cytokine has also been detected at implantation sites under both physiological and pathological conditions in many different species. At these particular sites, the outermost embryonic cell layer in close contact with the maternal tissues, the trophoblast exhibits intense phagocytic activity. To determine whether IFN-gamma affects phagocytosis of mouse-trophoblast cells, ectoplacental cone-derived trophoblast was cultured and evaluated for erythrophagocytosis. Phagocytic activity was monitored ultrastructurally and expressed as percentage of phagocytic trophoblast in total trophoblast cells. Conditioned medium from concanavalin-A-stimulated spleen cells significantly enhanced trophoblast phagocytosis. This effect was blocked by pre-incubation with an anti-IFN-gamma neutralizing antibody. Introduction of mouse recombinant IFN-gamma (mrIFN-gamma) to cultures did not increase cell death, but augmented the percentage of phagocytic cells in a dose-dependent manner. Ectoplacental cones from mice deficient for IFN-gamma receptor alpha-chain showed a significant decrease of the phagocytosis, even under mrIFN-gamma stimulation, suggesting that IFN-gamma-induced phagocytosis are receptor-mediated. Reverse transcriptase-PCR analyses confirmed the presence of mRNA for IFN-gamma receptor alpha and beta-chains in trophoblast cells and detected a significant increase in the mRNA levels of IFN-gamma receptor beta-chain, mainly, when cultured cells were exposed to IFN-gamma. Immunohistochemistry and Western blot analyses also revealed protein expression of the IFN-gamma receptor alpha-chain. These results suggest that IFN-gamma may participate in the phagocytic activation of the mouse trophoblast, albeit the exact mechanism was not hereby elucidated. Protective and/or nutritional fetal benefit may result from this physiological response. In addition, our data also shed some light on the understanding of trophoblast tolerance to inflammatory/immune cytokines during normal gestation
Expression of dNK cells and their cytokines in twin pregnancies with preeclampsia
OBJECTIVES: To assess the expression of decidual natural killer (dNK) cells and their cytokines in twin pregnancies with preeclampsia. METHODS: This was a prospective case-control study. The inclusion criteria were diamniotic (monochorionic or dichorionic) twin pregnancies in the third trimester with negative serological results for infectious diseases; absence of major fetal abnormalities or twin-twin transfusion syndrome; and no history of administration of corticosteroids in this pregnancy. The control group (CG) included uncomplicated twin pregnancies, and the preeclampsia group (PEG) included twin gestations with clinical and laboratory confirmation of the disease according to well-established criteria. Samples of the decidua were obtained and analyzed by immunohistochemistry for the expression of dNK cells and interleukins (ILs) 10, 12 and 15. In addition, maternal serum samples were collected to determine the levels of these interleukins. RESULTS: Thirty twin pregnancies were selected: 20 in the control group (CG) and 10 in the preeclampsia group (PEG). The PEG showed strong placental immunostaining for IL-15 (p=0.001) and high maternal serum levels of IL-10 (22.7 vs. 11.9 pg/mL, p=0.024) and IL-15 (15.9 vs. 7.4 pg/mL, p=0.024). CONCLUSION: A higher maternal serum concentration of both pro- and anti-inflammatory factors was observed in the twin pregnancies in the PEG. However, no difference in placental expression of IL-10 was found between the groups. These findings may suggest that maternal attempts to balance these interleukins were not sufficient to cause a placental response, and this failure may contribute to the development of preeclampsia
Epstein Barr Virus-positive large T-cell lymphoma presenting as acute appendicitis 17 years after cadaveric renal transplant: a case report
<p>Abstract</p> <p>Introduction</p> <p>The majority of post-transplant lymphoproliferative disorders in renal transplant patients are of the B-cell phenotype, while the T-cell phenotype is rare. We report a case of Epstein Barr Virus-positive, T-cell lymphoma in a renal transplant patient, presenting unusually as acute appendicitis.</p> <p>Case presentation</p> <p>A 45-year-old Hispanic male renal transplant patient presented with right-side abdominal pain 17 years after transplant. The laboratory studies were unremarkable. Laparoscopic exploration showed an inflamed appendix so a laparoscopic appendectomy was performed. Pathology of the appendix showed large cells positive for CD3, CD56 and Epstein Barr Virus-encoded RNA staining, and negative for CD20 and CD30. The tissue tested positive for T-cell receptor gene rearrangement by polymerase chain reaction analysis. Treatment management involved reduction of immunosuppression and initiation of chemotherapy with cisplatin, etoposide, gemcitabine, and solumedrol followed by cyclophosphamide, hydroxydaunorubicin, vincristine and prednisone). He recovered and the allo-grafted kidney is fully functional.</p> <p>Conclusion</p> <p>We report a rare case of post-renal transplant large T-cell lymphoma, with an unusual presentation of acute appendicitis and Epstein Barr Virus-positivity, which responded well to chemotherapy.</p
Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis
Background: Previous approaches to defining subtypes of colorectal carcinoma (CRC) and other cancers based on transcriptomes have assumed the existence of discrete subtypes. We analyze gene expression patterns of colorectal tumors from a large number of patients to test this assumption and propose an approach to identify potentially a continuum of subtypes that are present across independent studies and cohorts.
Results: We examine the assumption of discrete CRC subtypes by integrating 18 published gene expression datasets and \u3e3700 patients, and contrary to previous reports, find no evidence to support the existence of discrete transcriptional subtypes. Using a meta-analysis approach to identify co-expression patterns present in multiple datasets, we identify and define robust, continuously varying subtype scores to represent CRC transcriptomes. The subtype scores are consistent with established subtypes (including microsatellite instability and previously proposed discrete transcriptome subtypes), but better represent overall transcriptional activity than do discrete subtypes. The scores are also better predictors of tumor location, stage, grade, and times of disease-free survival than discrete subtypes. Gene set enrichment analysis reveals that the subtype scores characterize T-cell function, inflammation response, and cyclin-dependent kinase regulation of DNA replication.
Conclusions: We find no evidence to support discrete subtypes of the CRC transcriptome and instead propose two validated scores to better characterize a continuity of CRC transcriptomes
DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach
<p>Abstract</p> <p>Background</p> <p>The analysis of massive high throughput data via clustering algorithms is very important for elucidating gene functions in biological systems. However, traditional clustering methods have several drawbacks. Biclustering overcomes these limitations by grouping genes and samples simultaneously. It discovers subsets of genes that are co-expressed in certain samples. Recent studies showed that biclustering has a great potential in detecting marker genes that are associated with certain tissues or diseases. Several biclustering algorithms have been proposed. However, it is still a challenge to find biclusters that are significant based on biological validation measures. Besides that, there is a need for a biclustering algorithm that is capable of analyzing very large datasets in reasonable time.</p> <p>Results</p> <p>Here we present a fast biclustering algorithm called DeBi (Differentially Expressed BIclusters). The algorithm is based on a well known data mining approach called frequent itemset. It discovers maximum size homogeneous biclusters in which each gene is strongly associated with a subset of samples. We evaluate the performance of DeBi on a yeast dataset, on synthetic datasets and on human datasets.</p> <p>Conclusions</p> <p>We demonstrate that the DeBi algorithm provides functionally more coherent gene sets compared to standard clustering or biclustering algorithms using biological validation measures such as Gene Ontology term and Transcription Factor Binding Site enrichment. We show that DeBi is a computationally efficient and powerful tool in analyzing large datasets. The method is also applicable on multiple gene expression datasets coming from different labs or platforms.</p
- …