1,282 research outputs found
The 6-GHz multibeam maser survey III: comparison between the MMB and HOPS
We have compared the occurrence of 6.7-GHz and 12.2-GHz methanol masers with 22-GHz water masers and 6035-MHz excited-state OH masers in the 100 square degree region of the southern Galactic plane common to the Methanol Multibeam (MMB) and H2O southern Galactic Plane surveys (HOPS). We find the most populous star formation species to be 6.7-GHz methanol, followed by water, then 12.2-GHz and, finally, excited-state OH masers. We present association statistics, flux density (and luminosity where appropriate) and velocity range distributions across the largest, fully surveyed portion of the Galactic plane for four of the most common types of masers found in the vicinity of star formation regions. Comparison of the occurrence of the four maser types with far-infrared dust temperatures shows that sources exhibiting excited-state OH maser emission are warmer than sources showing any of the other three maser types. We further find that sources exhibiting both 6.7-GHz and 12.2-GHz methanol masers are warmer than sources exhibiting just 6.7-GHz methanol maser emission. These findings are consistent with previously made suggestions that both OH and 12.2-GHz methanol masers generally trace a later stage of star formation compared to other common maser types
Part 1: CT characterisation of pancreatic neoplasms: a pictorial essay
The pancreas is a site of origin of a diverse range of benign and malignant tumours, and these are frequently detected, diagnosed and staged with computed tomography (CT). Knowledge of the typical appearance of these neoplasms as well as the features of locoregional invasion is fundamental for all general and abdominal radiologists. This pictorial essay aims to outline the characteristic CT appearances of the spectrum of pancreatic neoplasms, as well as important demographic and clinical information that aids diagnosis. The second article in this series addresses common mimics of pancreatic neoplasia
Middleborns disadvantaged? testing birth-order effects on fitness in pre-industrial finns
Parental investment is a limited resource for which offspring compete in order to increase their own survival and reproductive success. However, parents might be selected to influence the outcome of sibling competition through differential investment. While evidence for this is widespread in egg-laying species, whether or not this may also be the case in viviparous species is more difficult to determine. We use pre-industrial Finns as our model system and an equal investment model as our null hypothesis, which predicts that (all else being equal) middleborns should be disadvantaged through competition. We found no overall evidence to suggest that middleborns in a family are disadvantaged in terms of their survival, age at first reproduction or lifetime reproductive success. However, when considering birth-order only among same-sexed siblings, first-, middle-and lastborn sons significantly differed in the number of offspring they were able to rear to adulthood, although there was no similar effect among females. Middleborn sons appeared to produce significantly less offspring than first-or lastborn sons, but they did not significantly differ from lastborn sons in the number of offspring reared to adulthood. Our results thus show that taking sex differences into account is important when modelling birth-order effects. We found clear evidence of firstborn sons being advantaged over other sons in the family, and over firstborn daughters. Therefore, our results suggest that parents invest differentially in their offspring in order to both preferentially favour particular offspring or reduce offspring inequalities arising from sibling competition
Recommended from our members
Five Questions about Viral Trafficking in Neurons
One of the most exciting areas in biology is the nervous system and how it works. Viral infections of the nervous system have provided exceptional insight at many levels, from pathogenesis to basic biology. The nervous system has evolved rather complicated barriers that facilitate access to nutrients and contact with the outside world, but block entry of pathogens and toxins [1]. However, when these barriers are reduced for any number of reasons, nervous system infections are possible. When they occur, they can be devastating and, even with good antiviral drugs, difficult to manage. Viral infections can enter the brain via the blood (e.g., HIV, various encephalitis viruses) or by spread inside neurons from the body surface (e.g., rabies and alpha herpes viruses) [2,3]. In vertebrates, the nervous system comprises a peripheral collection of neurons (the peripheral nervous system, PNS) and a central set found in the brain and spinal cord (the central nervous system, CNS). While neurons are central players in neurobiology, it is important to realize that the majority of cells that comprise the nervous system are highly specialized, nonneuronal cells (e.g., different types of glial cells) [4]. Cells of the immune system also engage with and signal to the PNS to affect changes in the CNS [5]. We will focus on neurons, despite the other cellular complexity, because neurons provide direct avenues for viral infection. Recognition that viral infection follows nerve pathways enabled the development of viruses for neuronal circuit tracing [6–8]
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Keeping vigil over the profession: a grounded theory of the context of nurse anaesthesia practice
<p>Abstract</p> <p>Background</p> <p>Nurse anaesthetists in the US have faced continued, repeated challenges to their profession. Regardless, they have met these challenges and have established themselves as major anaesthesia care providers. In this paper we address the research question: How do certified registered nurse anaesthetists (CRNAs) manage the socio-political context in which they provide care for their patients?</p> <p>Methods</p> <p>Grounded theory was used to explore how nurse anaesthetists protect and promote their profession. Purposive, snowball, and theoretical sampling was used and data were collected through participant observation and interviews conducted at a conference of the professional association, an educational program, by telephone, email exchanges, and time spent in operating rooms and an outpatient surgical clinic. Analysis included coding at increasingly abstract levels and constant comparison.</p> <p>Results</p> <p>The basic social process identified was Keeping Vigil Over the Profession, which explains how nurse anaesthetists protect and promote their profession. It is comprised of three contextual categories: Establishing Public Credibility through regulatory and educational standards, Political Vigilance and taking action in governmental and policy arenas, and Tending the Flock through a continuous information loop between local and administrative/political levels.</p> <p>Conclusions</p> <p>From our study of the context of nurse anaesthesia practice, it is clear that CRNAs are dedicated to protecting their ability to provide high quality patient care by maintaining constant vigilance over their profession.</p
- …