89 research outputs found

    Identification of Genes Responsive to Solar Simulated UV Radiation in Human Monocyte-Derived Dendritic Cells

    Get PDF
    Ultraviolet (UV) irradiation has profound effects on the skin and the systemic immune system. Several effects of UV radiation on Dendritic cells (DCs) functions have been described. However, gene expression changes induced by UV radiation in DCs have not been addressed before. In this report, we irradiated human monocyte-derived DCs with solar-simulated UVA/UVB and analyzed regulated genes on human whole genome arrays. Results were validated by RT-PCR and further analyzed by Gene Set Enrichment Analysis (GSEA). Solar-simulated UV radiation up-regulated expression of genes involved in cellular stress and inflammation, and down-regulated genes involved in chemotaxis, vesicular transport and RNA processing. Twenty four genes were selected for comparison by RT-PCR with similarly treated human primary keratinocytes and human melanocytes. Several genes involved in the regulation of the immune response were differentially regulated in UVA/UVB irradiated human monocyte-derived DCs, such as protein tyrosine phosphatase, receptor type E (PTPRE), thrombospondin-1 (THBS1), inducible costimulator ligand (ICOSL), galectins, Src-like adapter protein (SLA), IL-10 and CCR7. These results indicate that UV-exposure triggers the regulation of a complex gene repertoire involved in human-DC–mediated immune responses

    Thrombospondin-1/CD47 interaction regulates Th17 and treg differentiation in psoriasis

    Full text link
    Accumulating evidence on the role of Thrombospondin-1 (TSP-1) in the immune response has emerged during the last years. In spite of the importance of TSP-1 not only as anti-angiogenic factor but also as an immunomodulatory molecule, studies on the role of TSP-1 in psoriasis have been neglected. TSP-1 and CD47 expression were analyzed in skin samples from psoriasis patients and control subjects using RT-PCR and immunofluorescence. Expression of these molecules was also evaluated in peripheral blood CD4+ T cells, moDCs, and circulating primary DCs. The functional role of TSP-1/CD47 signaling axis in psoriasis was assessed in Th17 and Treg differentiation assays. Additionally, small interfering RNA assays specific to TSP-1 were performed in CD4+ T cells and monocyte derived DC to specifically evaluate the function of this protein. Lesional skin of psoriasis patients expressed lower TSP-1 and CD47 mRNA levels compared to non-lesional skin or skin from controls. Immunofluorescence staining revealed decreased expression of CD47 in CD45+ dermal cells from psoriasis samples compared to control subjects. Peripheral CD4+ T cells and circulating primary DCs from psoriasis also expressed lower levels of CD47 compared to controls. Although no significant differences were detected in TSP-1 expression in CD4+ T cells and moDCs between patients and controls, TSP-1 expression in psoriasis patients inversely correlated with disease activity evaluated by the Psoriasis Area and Index Activity. Furthermore, exogenous TSP-1 inhibited Th17 differentiation and stimulated the differentiation of CD4+ T cells toward Treg cells. Furthermore, RNA interference specific for TSP-1 confirmed the role of this molecule as a negative regulator of T cell activation. Because of the impact of TSP-1/CD47 signaling axis in Th17 and Treg differentiation, a dysregulated expression of these molecules in the immune cells from psoriasis patients may favor the exacerbated inflammatory response in this diseaseInstituto de Salud Carlos III (AES 2017): PI17/01972 to ED. Janssen; Spanish Ministry of Economy and Competitiveness (MINECO): Plan Nacional de Salud SAF2017-82886-R, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV); Proyecto Integrado de Excelencia PIE13/00041, Instituto de Salud Carlos III to FS-M, Instituto de Salud Carlos III PI16/02166, Universidad Autónoma de Madrid-Banco Santander (grant 2017/EEUU/03), and Red Temática de Excelencia en Investigación en Hipoxia (SAF 2017-90794-REDT) to MJC. This research has been co-financed by Fondo Europeo de Desarrollo Regional (FEDER

    Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8+ T cells in people living with HIV

    Get PDF
    HIV; Immunotherapy; MetabolismVIH; Inmunoterapia; MetabolismoVIH; Immunoteràpia; MetabolismeBackground Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. Methods We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. Findings HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1− cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. Interpretation Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines.EMG was supported by the NIH R21 program (R21AI140930), the Ramón y Cajal Program (RYC2018-024374-I), the MINECO/FEDER RETOS program (RTI2018-097485-A-I00), by Comunidad de Madrid Talento Program (2017-T1/BMD-5396) and by Gilead becas de investigación (GLD19/00168). EMG and IDS are supported by Centro de Investigación Biomédica en Red (CIBERINF) de Enfermedades Infecciosas (CB21/13/00107). MCM was supported by NIH R21 program (R21AI140930), “La Caixa Banking Foundation (H20-00218) and Gilead becas de investigación (GLD19/00168). MJB is supported by the Miguel Servet program funded by the Spanish Health Institute Carlos III (CP17/00179), the MINECO/FEDER RETOS program (RTI2018-101082-B-100), and Fundació La Marató TV3 (201805-10FMTV3). EMG and MJB are both funded by “La Caixa Banking Foundation (H20-00218) and by REDINCOV grant from Fundació La Marató TV3. FSM was supported by SAF2017-82886-R and PDI-2020-120412RB-I00 grants from the Ministerio de Ciencia e Innovación, and HR17-00016 grant from “La Caixa Banking Foundation. HF was funded by PI21/01583 grant from Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III. MJC was supported by PID2019-104406RB-I00 from Ministerio de Ciencia e Innovación. ISC was funded by the CM21/00157 Rio-Hortega grant. IT was supported by grant for the promotion of research studies master-UAM 2021

    CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4 + T lymphocytes

    Get PDF
    The mechanisms that control the inflammatory–immune response play a key role in tissue remodelling in cardiovascular diseases. T cell activation receptor CD69 binds to oxidized low-density lipoprotein (oxLDL), inducing the expression of anti-inflammatory NR4A nuclear receptors and modulating inflammation in atherosclerosis. To understand the downstream T cell responses triggered by the CD69-oxLDL binding, we incubated CD69-expressing Jurkat T cells with oxLDL. RNA sequencing revealed a differential gene expression profile dependent on the presence of CD69 and the degree of LDL oxidation. CD69-oxLDL binding induced the expression of NR4A receptors (NR4A1 and NR4A3), but also of PD-1. These results were confirmed using oxLDL and a monoclonal antibody against CD69 in CD69-expressing Jurkat and primary CD4 + lymphocytes. CD69-mediated induction of PD-1 and NR4A3 was dependent on NFAT activation. Silencing NR4A3 slightly increased PD-1 levels, suggesting a potential regulation of PD-1 by this receptor. Moreover, expression of PD-1, CD69 and NR4A3 was increased in human arteries with chronic inflammation compared to healthy controls, with a strong correlation between PD-1 and CD69 mRNA expression (r = 0.655 P < 0.0001). Moreover, PD-1 was expressed in areas enriched in CD3 infiltrating T cells. Our results underscore a novel mechanism of PD-1 induction independent of TCR signalling that might contribute to the role of CD69 in the modulation of inflammation and vascular remodelling in cardiovascular diseasesOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by grant S2017/BMD-3671-INFLAMUNE-CM from the Comunidad de Madrid, a grant from the Ramón Areces Foundation “Ciencias de la Vida y la Salud”, “La Caixa” Banking Foundation (HR17-00016) to FSM; grants PDC2021-121719-I00 and PDI-2020-120412RBI00 to FSM, and RTI2018-094727-B-100 to JMG funded by MCIN/ AEI/10.13039/501100011033 and by “ERDF A way of making Europe”; the Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR-00333) to JMG; and a grant from the Instituto de Salud Carlos III (PI18/0919) to CR. M. Jiménez-Fernández is supported by a FPI-Severo Ochoa-CNIC (PRE2019-087941); C. Ballester-Servera is supported by a FPU fellowship (Ministerio de Universidades). Data availability The data underlying this article are available in the article and in its online Supplementary material. Declarations Conflict of interest The authors have no confict of interest to declare. Ethical approval Written consent was obtained from all participating subjects. The procedure was approved by the Ethics Committee of the Hospital de la Santa Creu i Sant Pau (Barcelona, Spain) and was conducted in accordance with the Declaration of Helsinki. Consent for publication Consent to publish has been received from all participant

    Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia

    Full text link
    Introduction Patients with community-acquired pneumonia (CAP) undergo a dysregulated host response that is related to mortality. MicroRNAs (miRNAs) participate in this response, but their expression pattern and their role as biomarkers in CAP have not been fully characterized. Methods A prospective observational study was performed in a cohort of 153 consecutive patients admitted to hospital with CAP. Clinical and analytical variables were collected, and the main outcome variable was 30-day mortality. Small RNA was purified from plasma of these patients obtained on the first day of admission, and miRNA expression was analyzed by RTPCR. Univariate and multivariate analyses were carried out through the construction of a logistic regression model. The proposed model was compared with established prognostic clinical scales using ROC curve analysis. Results The mean age of the patients included was 74.7 years [SD 15.9]. Their mean PSI was 100.9 [SD 34.6] and the mean modified Charlson index was 2.9 [SD 3.0]. Both miR-146a and miR- 16-5p showed statistically significant association with 30-day mortality after admission due to CAP (1.10 vs. 0.23 and 51.74 vs. 35.23, respectively), and this association remained for miR-16-5p in the multivariate analysis adjusted for age, gender and history of bronchoaspiration (OR 0.95, p = 0.021). The area-under-the-curve (AUC) of our adjusted multivariate model (AUC = 0.954 95%CI [0.91–0.99]), was better than those of prognostic scales such as PSI (AUC = 0.799 [0.69–0.91]) and CURB-65 (AUC = 0.722 [0.58–0.86]). Conclusions High levels of miR-146a-5p and miR-16-5p upon admission due to CAP are associated with lower mortality at 30 days of follow-up. Both miRNAs could be used as biomarkers of good prognosis in subjects hospitalized with CAPThis work has been funded by the Carlos III Health Institute (ERDF, European Regional Development Fund), by the Spanish Society of Pneumology and Thoracic Surgery and by the Ministry of Science, Innovation and Universities of Spain

    Validation of galectin‑1 as potential diagnostic biomarker of early rheumatoid arthritis

    Get PDF
    Galectin 1 (Gal1) is a lectin with a wide cellular expression that functions as a negative regulator of the immune system in several animal models of autoimmune diseases. Identifcation of patients with rheumatoid arthritis (RA) has improved during the last decade, although there is still a need for biomarkers allowing an early diagnosis. In this regard, it has been recently proposed that Gal1 serum levels are increased in patients with RA compared to the general population. However, this topic is controversial in the literature. In this work, we provide additional information about the potential usefulness of Gal1 serum levels as a biomarker for RA diagnosis. We studied Gal1 serum and synovial fuid levels and clinical parameters in samples from 62 patients with early arthritis belonging to the PEARL study. In addition, 24 healthy donors were studied. We found that both patients fulflling RA criteria and patients with undiferentiated arthritis showed higher Gal1 levels than healthy donors. Similar fndings were observed in synovial fuid, which showed even higher levels than serum. However, we did not fnd correlation between Gal1 levels and disease activity or disability. Therefore, our results suggest that Gal1 could be a diagnostic but not a severity biomarker

    The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1

    Full text link
    CD69 is involved in immune cell homeostasis, regulating the T cell-mediated immune response through the control of Th17 cell differentiation. However, natural ligands for CD69 have not yet been described. Using recombinant fusion proteins containing the extracellular domain of CD69, we have detected the presence of a ligand(s) for CD69 on human dendritic cells (DCs). Pulldown followed by mass spectrometry analyses of CD69-binding moieties on DCs identified galectin-1 as a CD69 counterreceptor. Surface plasmon resonance and anti-CD69 blocking analyses demonstrated a direct and specific interaction between CD69 and galectin-1 that was carbohydrate dependent. Functional assays with both human and mouse T cells demonstrated the role of CD69 in the negative effect of galectin-1 on Th17 differentiation. Our findings identify CD69 and galectin-1 to be a novel regulatory receptor-ligand pair that modulates Th17 effector cell differentiation and functionThis work was funded by grants SAF2011-25834 and ERC-2011AdG 294340-GENTRIS to F.S.-M., RECAVA RD06/0014 from the Fondo de Investigaciones Sanitarias to J.V. and F.S.-M., and INDISNET 01592006 from the Comunidad de Madrid to F.S.-M. and P.M. and by grants from the Ministerio de Economia y Competitividad (PI11/01562 to P.N.) and the Generalitat de Catalunya-AGAUR (2009SGR1409 to P.N.). The Ministry of Science and Innovation and the Pro-CNIC Foundation support CNI

    Solar-Simulated Ultraviolet Radiation Induces Abnormal Maturation and Defective Chemotaxis of Dendritic Cells

    Get PDF
    Exposure to ultraviolet (UV) light induces immunosuppression. Different evidences indicate that this phenomenon is mainly a consequence of the effect of UV light on skin dendritic cells (DC). To investigate the cellular and molecular basis of this type of immunosuppression, we assessed in vitro the effect of solar-simulated UV radiation on the phenotypic and functional characteristics of human monocyte-derived DC and Langerhans-like DC. UV radiation induced a decreased expression of molecules involved in antigen capture as DC-SIGN and the mannose receptor. This effect was accompanied by a diminished endocytic capacity, an enhanced expression of molecules involved in antigen presentation such as major histocompatibility complex-II and CD86, and a significant increase in their capability to stimulate T cells. Furthermore, irradiated DC failed to acquire a full mature phenotype upon treatment with lipopolysaccharide. On the other hand, solar-simulated radiation induced the secretion of tumor necrosis factor-αand interleukin (IL)-10 by DC, but no IL-12. Interestingly, solar-simulated UV radiation also caused an altered migratory phenotype, with an increased expression of CXCR4, and a lack of induction of CCR7, thus correlating with a high chemotactic response to stromal cell-derived factor 1(SDF-1) (CXCL12), but not to secondary lymphoid tissue chemokine (SLC) (CCL21). These data indicate that solar-simulated UV radiation induces a defective maturation and an anomalous migratory phenotype of DC

    Influence of air pollutants on circulating inflammatory cells and microRNA expression in acute myocardial infarction.

    Get PDF
    Air pollutants increase the risk and mortality of myocardial infarction (MI). The aim of this study was to assess the inflammatory changes in circulating immune cells and microRNAs in MIs related to short-term exposure to air pollutants. We studied 192 patients with acute coronary syndromes and 57 controls with stable angina. For each patient, air pollution exposure in the 24-h before admission, was collected. All patients underwent systematic circulating inflammatory cell analyses. According to PM2.5 exposure, 31 patients were selected for microRNA analyses. STEMI patients exposed to PM2.5 showed a reduction of CD4+ regulatory T cells. Furthermore, in STEMI patients the exposure to PM2.5 was associated with an increase of miR-146a-5p and miR-423-3p. In STEMI and NSTEMI patients PM2.5 exposure was associated with an increase of miR-let-7f-5p. STEMI related to PM2.5 short-term exposure is associated with changes involving regulatory T cells, miR-146a-5p and miR-423-3p.This work was supported by Ministerio de Ciencia e Innovación [SAF2017-82886-R, to F.S.M] Proyecto de Investigación en Salud [PI21/01583 to H.F.]. Grant from the Sociedad Española de Cardiologia to F.A. Ministerio de Ciencia, Innovación y Universidades, Carlos III Institute of Health-Fondo de Investigación Sanitaria [PI19/00545 to P.M.] From the Comunidad de Madrid [S2017/BMD-3671-INFLAMUNE-CM] to FSM and PM. Tis research has been co-fnanced by Fondo Europeo de Desarrollo Regional (FEDER).S

    Targeting L-type amino acid transporter 1 in innate and adaptive T cells efficiently controls skin inflammation

    Get PDF
    BACKGROUND: Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1β, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE: We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS: LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS: LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1β, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1β stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1β-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION: Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1β/IL-17 axis.Funding This manuscript has been funded by grants SAF 2017-82886-R (FS-M) and SAF 2013-42850-R (MF) from the Spanish Ministry of Economy and Competitiveness; CAM (S2017/BMD-3671-INFLAMUNE-CM) from the Comunidad de Madrid (FS-M); CIBERCV, BIOIMID PIE13/041 from Instituto de Salud Carlos III and Fundación La Marató TV3 (20152330 31). The project leading to these results has also received funding from FUNDACIÓN BBVA A EQUIPOS DE INVESTIGACIÓN CIENTÍFICA 2018 and from “la Caixa” Banking Foundation under the project code HR17-00016 (FS-M), and from Agencia Estatal de Investigación, Fondo Europeo de Desarrollo Regional PI17/01972 (E.D).S
    corecore