1,312 research outputs found
Profile design for wings and propellers
It has now become customary to develop profiles for wings and propellers for a given employment of the aircraft. This is possible because methods and computers are available to study an entire series of variants in comparatively short time. The basic viewpoints for profile design are presented. It is shown that laminarization has its advantages in almost all cases, including the design of a turbine blade and the design of the profile of an airliner. The requirements which profiles have to satisfy are discussed along with the possibilities for increasing lift on profiles
Reduction of profile drag by blowing out through peg holes in areas of streamline separation bubbles
Streamline separation bubbles on aircraft profiles and fuselages were investigated. The additional drag was examined in relation to increased angle of incidence and unusually high wall sheer stress. A reduction of the separation bubble and a decrease in drag is obtained with pneumatic turbulators that blow ram air out of 0.6mm pilot tubes at a distance of 16 mm. The pneumatic models are implemented at various positions and are found to be effective after the position of separation
Trajectories in life satisfaction before and during COVID-19 with respect to perceived valence and self-efficacy
Actions taken by governments to counteract the spread of the COVID-19 pandemic led to profound restrictions in daily lives, especially for adolescents and young adults, with closed schools and universities, travel restrictions, and reduction in social contacts. The purpose of the current study is to investigate the development of life satisfaction with assessments before and during the pandemic, including separate measurement occasions during a strict lockdown and when the implemented restrictions were relaxed again. Data are based on the German Personality Panel (GePP) with 1,920 young adults, assessed on four measurement occasions over a period of three years. Using latent change score modeling, we investigate the outbreak of the COVID-19 pandemic with respect to its perception as a critical life event over time. Further, we examine the influence of self-efficacy on change in life-satisfaction, as the belief in one’s innate abilities has been shown to promote health related behavior and buffers against effects of negatively perceived critical life events. While average life satisfaction remained stable across time, we found a main effect of perceived positive valence and self-efficacy on latent change in life satisfaction at the within person level. Expressions of self-efficacy did not moderate the influence of the perception of the pandemic on self-reported life satisfaction. This study provides an important contribution to the recent COVID-19 literature as well as to the debate on stability and change of self-reported life satisfaction
Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion
For a specific choice of the diffusion, the parabolic-elliptic
Patlak-Keller-Segel system with non-linear diffusion (also referred to as the
quasi-linear Smoluchowski-Poisson equation) exhibits an interesting threshold
phenomenon: there is a critical mass such that all the solutions with
initial data of mass smaller or equal to exist globally while the
solution blows up in finite time for a large class of initial data with mass
greater than . Unlike in space dimension 2, finite mass self-similar
blowing-up solutions are shown to exist in space dimension
The entangling side of the Unruh-Hawking effect
We show that the Unruh effect can create net quantum entanglement between
inertial and accelerated observers depending on the choice of the inertial
state. This striking result banishes the extended belief that the Unruh effect
can only destroy entanglement and furthermore provides a new and unexpected
source for finding experimental evidence of the Unruh and Hawking effects.Comment: 4 pages, 4 figures. Added Journal referenc
Axon initial segment dysfunction in a mouse model of human genetic epilepsy with febrile seizures plus
Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the ß1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type ß1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the ß1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with ß1(C121W) subunits. We therefore conclude that Na+ channel ß1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired
The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout
A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built
as a shashlik lead-scintillator calorimeter with wave length shifter fiber
readout. Before installation it was tested and calibrated using the X5 test
beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in
the momentum range of 10 to 100 GeV/c were used. Results of these measurements
are presented as well as a calibration monitoring system based on a Co
source.Comment: 38 pages (Latex); 26 figures (ps
Customizable and scalable automated assessment of C/C++ programming assignments
The correction of exercises in programming courses is a laborious task that has traditionally been performed in a manual way. This situation, in turn, delays the access by students to feedback that can contribute significantly to their training as future professionals. Over the years, several approaches have been proposed to automate the assessment of students' programs. Static analysis is a known technique that can partially simulate the process of manual code review performed by lecturers. As such, it is a plausible option to assess whether students' solutions meet the requirements imposed on the assignments. However, implementing a personalized analysis beyond the rules included in existing tools may be a complex task for the lecturer without a mechanism that guides the work. In this paper, we present a method to provide automated and specific feedback to immediately inform students about their mistakes in programming courses. To that end, we developed the CAC++ library, which enables constructing tailored static analysis programs for C/C++ practices. The library allows for great flexibility and personalization of verifications to adjust them to each particular task, overcoming the limitations of most of the existing assessment tools. Our approach to providing specific feedback has been evaluated for a period of three academic years in a course related to object-oriented programming. The library allowed lecturers to reduce the size of the static analysis programs developed for this course. During this period, the academic results improved and undergraduates positively valued the aid offered when undertaking the implementation of assignments.Universidad de Cádiz, Grant/Award Numbers: sol-201500054192-tra, sol-201600064680-tra; Ministerio de Ciencia, Innovación y Universidades, Grant/Award Number: RTI2018-093608-B-C33; European Regional Development Fun
- …