43 research outputs found

    Facing the Challenge of Data Transfer from Animal Models to Humans: the Case of Persistent Organohalogens

    Get PDF
    A well-documented fact for a group of persistent, bioaccumulating organohalogens contaminants, namely polychlorinated biphenyls (PCBs), is that appropriate regulation was delayed, on average, up to 50 years. Some of the delay may be attributed to the fact that the science of toxicology was in its infancy when PCBs were introduced in 1920's. Nevertheless, even following the development of modern toxicology this story repeats itself 45 years later with polybrominated diphenyl ethers (PBDEs) another compound of concern for public health. The question is why? One possible explanation may be the low coherence between experimental studies of toxic effects in animal models and human studies. To explore this further, we reviewed a total of 807 PubMed abstracts and full texts reporting studies of toxic effects of PCB and PBDE in animal models. Our analysis documents that human epidemiological studies of PBDE stand to gain little from animal studies due to the following: 1) the significant delay between the commercialisation of a substance and studies with animal models; 2) experimental exposure levels in animals are several orders of magnitude higher than exposures in the general human population; 3) the limited set of evidence-based endocrine endpoints; 4) the traditional testing sequence (adult animals – neonates – foetuses) postpones investigation of the critical developmental stages; 5) limited number of animal species with human-like toxicokinetics, physiology of development and pregnancy; 6) lack of suitable experimental outcomes for the purpose of epidemiological studies. Our comparison of published PCB and PBDE studies underscore an important shortcoming: history has, unfortunately, repeated itself. Broadening the crosstalk between the various branches of toxicology should therefore accelerate accumulation of data to enable timely and appropriate regulatory action

    Either taking it easy or feeling too tired: old Cory's shearwaters display reduced activity levels while at sea

    Get PDF
    It has long been known that birds change their behaviour, reproductive performance and survival as they mature, including in the first few years after recruitment into the breeding population. However, and contrasting with the description of patterns of actuarial and reproductive senescence in later years, there are surprisingly few studies documenting changes in behaviour in old individuals. Such studies are important, as birds provide particularly interesting models for studying the biology of senescence. It has been suggested that, unlike mammals, birds may remain physically fit until an advanced age, yet this has limited empirical support. In this paper, we used activity (immersion) loggers to show that old (>26 years) Cory’s Shearwaters Calonectris diomedea are less active when foraging at sea, spend more time resting on the water and have a smaller number of take-offs and landings during darkness, when compared to experienced mid-aged individuals (13–20 years old). Old individuals also tended to have reduced immune response against an experimental challenge using phytohaemagglutinin. These results are in line with observed reductions in activity levels with age in a wide range of non-avian taxa, and may suggest that old seabirds are physically less fit than younger individuals. Alternatively, old birds might simply be more experienced and their reduction in activity might reflect a strategic regulation of investment in different activities. Our study illustrates the potential for gaining insights into avian aging patterns and processes by looking into the behaviour of model organisms. We therefore encourage more research focusing on behavioural parameters that may reflect variations in physical condition or strategic choices, during both the breeding and non-breeding seasons
    corecore