518 research outputs found

    Bmcc1s, a Novel Brain-Isoform of Bmcc1, Affects Cell Morphology by Regulating MAP6/STOP Functions

    Get PDF
    The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology

    Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early life lead exposure might be a risk factor for neurocognitive impairment in adulthood.</p> <p>Objectives</p> <p>We sought to assess the relationship between early life environmental lead exposure and intellectual function in adulthood. We also attempted to identify which time period blood-lead concentrations are most predictive of adult outcome.</p> <p>Methods</p> <p>We recruited adults in the Boston area who had participated as newborns and young children in a prospective cohort study that examined the relationship between lead exposure and childhood intellectual function. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). The association between lead concentrations and IQ scores was examined using linear regression.</p> <p>Results</p> <p>Forty-three adults participated in neuropsychological testing. Childhood blood-lead concentration (mean of the blood-lead concentrations at ages 4 and 10 years) had the strongest relationship with Full-Scale IQ (β = -1.89 ± 0.70, p = 0.01). Full-scale IQ was also significantly related to blood-lead concentration at age 6 months (β = -1.66 ± 0.75, p = 0.03), 4 years (β = -0.90 ± 0.41, p = 0.03) and 10 years (β = -1.95 ± 0.80, p = 0.02). Adjusting for maternal IQ altered the significance of the regression coefficient.</p> <p>Conclusions</p> <p>Our study suggests that lead exposure in childhood predicts intellectual functioning in young adulthood. Our results also suggest that school-age lead exposure may represent a period of increased susceptibility. Given the small sample size, however, the potentially confounding effects of maternal IQ cannot be excluded and should be evaluated in a larger study.</p

    Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early life lead exposure might be a risk factor for neurocognitive impairment in adulthood.</p> <p>Objectives</p> <p>We sought to assess the relationship between early life environmental lead exposure and intellectual function in adulthood. We also attempted to identify which time period blood-lead concentrations are most predictive of adult outcome.</p> <p>Methods</p> <p>We recruited adults in the Boston area who had participated as newborns and young children in a prospective cohort study that examined the relationship between lead exposure and childhood intellectual function. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). The association between lead concentrations and IQ scores was examined using linear regression.</p> <p>Results</p> <p>Forty-three adults participated in neuropsychological testing. Childhood blood-lead concentration (mean of the blood-lead concentrations at ages 4 and 10 years) had the strongest relationship with Full-Scale IQ (β = -1.89 ± 0.70, p = 0.01). Full-scale IQ was also significantly related to blood-lead concentration at age 6 months (β = -1.66 ± 0.75, p = 0.03), 4 years (β = -0.90 ± 0.41, p = 0.03) and 10 years (β = -1.95 ± 0.80, p = 0.02). Adjusting for maternal IQ altered the significance of the regression coefficient.</p> <p>Conclusions</p> <p>Our study suggests that lead exposure in childhood predicts intellectual functioning in young adulthood. Our results also suggest that school-age lead exposure may represent a period of increased susceptibility. Given the small sample size, however, the potentially confounding effects of maternal IQ cannot be excluded and should be evaluated in a larger study.</p

    A Comparative Study of Human TLR 7/8 Stimulatory Trimer Compositions in Influenza A Viral Genomes

    Get PDF
    Background: Variation in the genomes of single-stranded RNA viruses affects their infectivity and pathogenicity in two ways. First, viral genome sequence variations lead to changes in viral protein sequences and activities. Second, viral genome sequence variation produces diversity at the level of nucleotide composition and diversity in the interactions between viral RNAs and host toll-like receptors (TLRs). A viral genome-typing method based on this type of diversity has not yet been established. Methodology/Principal Findings: In this study, we propose a novel genomic trait called the ‘‘TLR stimulatory trimer composition’ ’ (TSTC) and two quantitative indicators, Score S and Score N, named ‘‘TLR stimulatory scores’ ’ (TSS). Using the complete genome sequences of 10,994 influenza A viruses (IAV) and 251 influenza B viruses, we show that TSTC analysis reveals the diversity of Score S and Score N among the IAVs isolated from various hosts. In addition, we show that low values of Score S are correlated with high pathogenicity and pandemic potential in IAVs. Finally, we use Score S and Score N to construct a logistic regression model to recognize IAV strains that are highly pathogenic or have high pandemic potential. Conclusions/Significance: Results from the TSTC analysis indicate that there are large differences between human and avian IAV genomes (except for segment 3), as illustrated by Score S. Moreover, segments 1, 2, 3 and 4 may be majo

    CEACAM1 Negatively Regulates IL-1β Production in LPS Activated Neutrophils by Recruiting SHP-1 to a SYK-TLR4-CEACAM1 Complex

    Get PDF
    LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation

    Anti-HIV Activity Mediated by Natural Killer and CD8+ Cells after Toll-Like Receptor 7/8 Triggering

    Get PDF
    We previously found that triggering TLR7/8 either by single stranded HIV RNA or synthetic compounds induced changes in the lymphoid microenvironment unfavorable to HIV. In this study, we used selective TLR7 and 8 agonists to dissect their contribution to the anti-HIV effects. While triggering TLR7 inhibited efficiently HIV replication in lymphoid suspension cells from tonsillar origin, its effect was inconsistent in peripheral blood mononuclear cells (PBMC). In contrast, triggering TLR8 showed a very prominent and overall very consistent effect in PBMC and tonsillar lymphoid suspension cells. Depletion of dendritic cells (DC), Natural killer cells (NK) and CD8+ T-cells from PBMC resulted in the reversal of TLR8 induced anti-HIV effects. Especially noteworthy, depletion of either NK or CD8+ T-cells alone was only partially effective. We interpret these findings that DC are the initiator of complex changes in the microenvironment that culminates in the anti-HIV active NK and CD8+ effector cells. The near lack of NK and the low number of CD8+ T-cells in tonsillar lymphoid suspension cells may explain the lower TLR8 agonist's anti-HIV effects in that tissue. However, additional cell-type specific differences must exist since the TLR7 agonists had a very strong inhibitory effect in tonsillar lymphoid suspension cells. Separation of effector from the CD4+ target cells did not abolish the anti-HIV effects pointing to the critical role of soluble factors. Triggering TLR7 or 8 were accompanied by major changes in the cytokine milieu; however, it appeared that not a single soluble factor could be assigned for the potent effects

    Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It

    Get PDF
    IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.National Institutes of Health (U.S.)Massachusetts Life Sciences Center (New Investigator Award)National Institute of General Medical Sciences (U.S.) (Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33))Studienstiftung des deutschen VolkesCancer Research Institute (New York, N.Y.)Cleo and Paul Schimmel FoundationBayer HealthcareHuman Frontier Science Program (Strasbourg, France

    Elevated Serum Uric Acid Is Associated with High Circulating Inflammatory Cytokines in the Population-Based Colaus Study

    Get PDF
    BACKGROUND: The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor- alpha (TNF-alpha) and C-reactive protein (CRP). METHODS AND FINDINGS: This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-alpha, IL-1beta and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-alpha, CRP and IL-1beta were 355 micromol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 micromol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-alpha and CRP and negatively with IL-1beta (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P&lt;0.05). In multivariable analyses, SUA was associated positively with CRP (beta coefficient +/- SE = 0.35+/-0.02, P&lt;0.001), TNF-alpha (0.08+/-0.02, P&lt;0.001) and IL-6 (0.10+/-0.03, P&lt;0.001), and negatively with IL-1beta (-0.07+/-0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated. CONCLUSIONS: SUA was associated positively with IL-6, CRP and TNF-alpha and negatively with IL-1beta, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation

    Intracellular Invasion of Orientia tsutsugamushi Activates Inflammasome in ASC-Dependent Manner

    Get PDF
    Orientia tsutsugamushi, a causative agent of scrub typhus, is an obligate intracellular bacterium, which escapes from the endo/phagosome and replicates in the host cytoplasm. O. tsutsugamushi infection induces production of pro-inflammatory mediators including interleukin-1β (IL-1β), which is secreted mainly from macrophages upon cytosolic stimuli by activating cysteine protease caspase-1 within a complex called the inflammasome, and is a key player in initiating and maintaining the inflammatory response. However, the mechanism for IL-1β maturation upon O. tsutsugamushi infection has not been identified. In this study, we show that IL-1 receptor signaling is required for efficient host protection from O. tsutsugamushi infection. Live Orientia, but not heat- or UV-inactivated Orientia, activates the inflammasome through active bacterial uptake and endo/phagosomal maturation. Furthermore, Orientia-stimulated secretion of IL-1β and activation of caspase-1 are ASC- and caspase-1- dependent since IL-1β production was impaired in Asc- and caspase-1-deficient macrophages but not in Nlrp3-, Nlrc4- and Aim2-deficient macrophages. Therefore, live O. tsutsugamushi triggers ASC inflammasome activation leading to IL-1β production, which is a critical innate immune response for effective host defense
    corecore