14 research outputs found

    mRNA vaccination drives differential mucosal neutralizing antibody profiles in naïve and SARS-CoV-2 previously-infected individuals

    Get PDF
    Two doses of BNT162b2 mRNA vaccine induces a strong systemic SARS-CoV-2 specific humoral response. However, SARS-CoV-2 airborne transmission makes mucosal immune response a crucial first line of defense. Therefore, we characterized SARS-CoV-2-specific IgG responses induced by BNT162b2 vaccine, as well as IgG responses to other pathogenic and seasonal human coronaviruses in oral fluid and plasma from 200 UK healthcare workers who were naïve (N=62) or previously infected with SARS-CoV-2 (N=138) using a pan-coronavirus multiplex binding immunoassay (Meso Scale Discovery®). Additionally, we investigated the impact of historical SARS-CoV-2 infection on vaccine-induced IgG, IgA and neutralizing responses in selected oral fluid samples before vaccination, after a first and second dose of BNT162b2, as well as following a third dose of mRNA vaccine or breakthrough infections using the same immunoassay and an ACE2 inhibition assay. Prior to vaccination, we found that spike-specific IgG levels in oral fluid positively correlated with IgG levels in plasma from previously-infected individuals (Spearman r=0.6858, p<0.0001) demonstrating that oral fluid could be used as a proxy for the presence of plasma SARS-CoV-2 IgG. However, the sensitivity was lower in oral fluid (0.85, 95% CI 0.77-0.91) than in plasma (0.94, 95% CI 0.88-0.97). Similar kinetics of mucosal and systemic spike-specific IgG levels were observed following vaccination in naïve and previously-infected individuals, respectively. In addition, a significant enhancement of OC43 and HKU1 spike-specific IgG levels was observed in previously-infected individuals following one vaccine dose in oral fluid (OC43 S: p<0.0001; HKU1 S: p=0.0423) suggesting cross-reactive IgG responses to seasonal beta coronaviruses. Mucosal spike-specific IgA responses were induced by mRNA vaccination particularly in previously-infected individuals (71%) but less frequently in naïve participants (23%). Neutralizing responses to SARS-CoV-2 ancestral and variants of concerns were detected following vaccination in naïve and previously-infected participants, with likely contribution from both IgG and IgA in previously-infected individuals (correlations between neutralizing responses and IgG: Spearman r=0.5642, p<0.0001; IgA: Spearman r=0.4545, p=0.0001). We also observed that breakthrough infections or a third vaccine dose enhanced mucosal antibody levels and neutralizing responses. These data contribute to show that a previous SARS-CoV-2 infection tailors the mucosal antibody profile induced by vaccination

    Establishing SARS-CoV-2 membrane protein-specific antibodies as a valuable serological target via high-content microscopy

    Get PDF
    The prevalence and strength of serological responses mounted toward SARS-CoV-2 proteins other than nucleocapsid (N) and spike (S), which may be of use as additional serological markers, remains underexplored. Using high-content microscopy to assess antibody responses against full-length StrepTagged SARS-CoV-2 proteins, we found that 85% (166/196) of unvaccinated individuals with RT-PCR confirmed SARS-CoV-2 infections and 74% (31/42) of individuals infected after being vaccinated developed detectable IgG against the structural protein M, which is higher than previous estimates. Compared with N antibodies, M IgG displayed a shallower time-dependent decay and greater specificity. Sensitivity for SARS-CoV-2 seroprevalence was enhanced when N and M IgG detection was combined. These findings indicate that screening for M seroconversion may be a good approach for detecting additional vaccine breakthrough infections and highlight the potential to use HCM as a rapidly deployable method to identify the most immunogenic targets of newly emergent pathogens

    Altered subgenomic RNA abundance provides unique insight into SARS-CoV-2 B.1.1.7/Alpha variant infections

    Get PDF
    B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3’ of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern

    Efficient overexpression and purification of severe acute respiratory syndrome coronavirus 2 nucleocapsid proteins in Escherichia coli

    No full text
    The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates

    Altered subgenomic RNA abundance provides unique insight into SARS-CoV-2 B.1.1.7/Alpha variant infections

    Get PDF
    B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3’ of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern

    Historical GIS: Structuring, mapping and analysing geographies of the past.

    No full text
    The last 10 years have seen a sudden rise in interest in the use of Geographical Information Systems (GIS) in historical research. This has led to a field that has become known as `historical GIS'. This development started in the more quantitative ends of the discipline but has spread to encompass qualitative research as well. Interest in historical GIS is not restricted to researchers who would previously have regarded themselves as historical geographers, but has in fact led to an increased awareness of the importance of geography from across the discipline of history. This paper introduces historical GIS and critically evaluates how it is affecting the practice of historical geography

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.Public Health and primary carePrevention, Population and Disease management (PrePoD
    corecore