522 research outputs found

    The reliability of measuring gross efficiency during high intensity cycling exercise

    Get PDF
    Purpose: To evaluate the reliability of calculating gross efficiency (GE) conventionally and using a back extrapolation (BE) method during high-intensity exercise (HIE). Methods: A total of 12 trained participants completed 2 HIE bouts (P1 = 4 min at 80% maximal aerobic power [MAP]; P2 = 4 min at 100%MAP). GE was calculated conventionally in the last 3 minutes of submaximal (50%MAP) cycling bouts performed before and after HIE (Pre50%MAP and Post50%MAP). To calculate GE using BE (BGE), a linear regression of GE submaximal values post-HIE were back extrapolated to the end of the HIE bout. Results: BGE was significantly correlated with Post50%MAP GE in P1 (r = .63; P = .01) and in P2 (r = .85; P = .002). Reliability data for P1 and P2 BGE demonstrate a mean coefficient of variation of 7.8% and 9.8% with limits of agreement of 4.3% and 4.5% in relative GE units, respectively. P2 BGE was significantly lower than P2 Post50%MAP GE (18.1% [1.6%] vs 20.3% [1.7%]; P = .01). Using a declining GE from the BE method, there was a 44% greater anaerobic contribution compared with assuming a constant GE during 4-minute HIE at 100%MAP. Conclusion: HIE acutely reduced BGE at 100%MAP. A greater anaerobic contribution to exercise as well as excess postexercise oxygen consumption at 100%MAP may contribute to this decline in efficiency. The BE method may be a reliable and valid tool in both estimating GE during HIE and calculating aerobic and anaerobic contributions

    Colostrum provision and care of calves among smallholder farmers in the Kaziranga region of Assam, India.

    Get PDF
    Smallholder cattle farming in Assamese villages is sub-optimal in terms of calf survivability, growth, age at first service, and milk yield. Proper understanding of the local situation is essential to formulate appropriate, locally driven, livestock keeper education to sustainably improve animal health, welfare and productivity. In-depth interviewing and direct observation were used to understand the farming strategies, husbandry practices and challenges to health and productivity in a cluster of typical villages in the Kaziranga region of Assam, India, where resource use is balanced between the needs of humans and livestock, with competition from wild species. Knowledge of the importance of colostrum consumption by calves is poor. Timely consumption of sufficient colostrum (locally called "phehu") by calves was clearly sub-optimal in the majority of households. The reasons behind this are nuanced, but the practice of collecting colostrum from newly calved cows to make confectionery for human consumption is an important contributory factor. Care of the umbilicus of the newborn is not routine practice in the locality. Local women are the key group assisting with young and sick animals, including cases of simple dystocia and retained foetal membranes. Cows are usually milked once daily, to attempt to balance the needs for milk of household with those of the calf, which can result in suboptimal nutrition for calves. There are clear opportunities to improve animal health and productivity through locally provided farmer education, particularly with reference to colostrum provision, and the engagement of women farmers in any such programme is key to success

    The effects of acute carbohydrate and caffeine feeding strategies on cycling efficiency

    Get PDF
    To assess the effect of carbohydrate and caffeine on gross efficiency (GE), 14 cyclists (V? O2max 57.6 ± 6.3 ml.kg?1.min?1) completed 4 × 2-hour tests at a submaximal exercise intensity (60% Maximal Minute Power). Using a randomized, counter-balanced crossover design, participants con- sumed a standardised diet in the 3-days preceding each test and subsequently ingested either caffeine (CAF), carbohydrate (CHO), caffeine+carbohydrate (CAF+CHO) or water (W) during exercise whilst GE and plasma glucose were assessed at regular intervals (~30 mins). GE progressively decreased in the W condition but, whilst caffeine had no effect, this was significantly attenuated in both trials that involved carbohydrate feedings (W = ?1.78 ± 0.31%; CHO = ?0.70 ± 0.25%, p = 0.008; CAF+CHO = ?0.63 ± 0.27%, p = 0.023; CAF = ?1.12 ± 0.24%, p = 0.077). Blood glucose levels were significantly higher in carbohydrate ingestion conditions (CHO = 4.79 ± 0.67 mmol·L?1, p < 0.001; CAF +CHO = 5.05 ± 0.81 mmol·L?1, p < 0.001; CAF = 4.46 ± 0.75 mmol·L?1; W = 4.20 ± 0.53 mmol·L?1). Carbohydrate ingestion has a small but significant effect on exercise-induced reductions in GE, indicat- ing that cyclists’ feeding strategy should be carefully monitored prior to and during assessment

    The acute physiological and perceptual effects of recovery interval intensity during cycling‐based high‐intensity interval training

    Get PDF
    Purpose: The current study sought to investigate the role of recovery intensity on the physiological and perceptual responses during cycling-based aerobic high-intensity interval training. Methods: Fourteen well-trained cyclists (V˙O2peak: 62 ± 9 mL kg−1 min−1) completed seven laboratory visits. At visit 1, the participants’ peak oxygen consumption (V˙O2peak) and lactate thresholds were determined. At visits 2–7, participants completed either a 6 × 4 min or 3 × 8 min high-intensity interval training (HIIT) protocol with one of three recovery intensity prescriptions: passive (PA) recovery, active recovery at 80% of lactate threshold (80A) or active recovery at 110% of lactate threshold (110A).Results: The time spent at > 80%, > 90% and > 95% of maximal minute power during the work intervals was significantly increased with PA recovery, when compared to both 80A and 110A, during both HIIT protocols (all P ≤ 0.001). However, recovery intensity had no effect on the time spent at > 90% V˙O2peak (P = 0.11) or > 95% V˙O2peak (P = 0.50) during the work intervals of both HIIT protocols. Session RPE was significantly higher following the 110A recovery, when compared to the PA and 80A recovery during both HIIT protocols (P < 0.001).Conclusion: Passive recovery facilitates a higher work interval PO and similar internal stress for a lower sRPE when compared to active recovery and therefore may be the efficacious recovery intensity prescription

    The ergogenic effects of transcranial direct current stimulation on exercise performance

    Get PDF
    The physical limits of the human performance have been the object of study for a considerable time. Most of the research has focused on the locomotor muscles, lungs and heart. As a consequence, much of the contemporary literature has ignored the importance of the brain in the regulation of exercise performance. With the introduction and development of new non-invasive devices, the knowledge regarding the behaviour of the central nervous system during exercise has advanced. A first step has been provided from studies involving neuroimaging techniques where the role of specific brain areas have been identified during isolated muscle or whole-body exercise. Furthermore, a new interesting approach has been provided by studies involving non-invasive techniques to manipulate specific brain areas. These techniques most commonly involve the use of an electrical or magnetic field crossing the brain. In this regard, there has been emerging literature demonstrating the possibility to influence exercise outcomes in healthy people following stimulation of specific brain areas. Specifically, transcranial direct current stimulation (tDCS) has been recently used prior to exercise in order to improve exercise performance under a wide range of exercise types. In this review article, we discuss the evidence provided from experimental studies involving tDCS. The aim of this review is to provide a critical analysis of the experimental studies investigating the application of tDCS prior to exercise and how it influences brain function and performance. Finally, we provide a critical opinion of the usage of tDCS for exercise enhancement. This will consequently progress the current knowledge base regarding the effect of tDCS on exercise and provides both a methodological and theoretical foundation on which future research can be based

    High Agreement between Laboratory and Field Estimates of Critical Power in Cycling

    Get PDF
    The purpose of this study was to investigate the level of agreement between laboratory-based estimates of critical power (CP) and results taken from a novel field test. Subjects were fourteen trained cyclists (age 40±7 yrs; body mass 70.2±6.5 kg; V?O2max 3.8±0.5 L · min-1). Laboratory-based CP was estimated from 3 constant work-rate tests at 80%, 100% and 105% of maximal aerobic power (MAP). Field-based CP was estimated from 3 all-out tests performed on an outdoor velodrome over fixed durations of 3, 7 and 12 min. Using the linear work limit (Wlim) vs. time limit (Tlim) relation for the estimation of CP1 values and the inverse time (1/t) vs. power (P) models for the estimation of CP2 values, field-based CP1 and CP2 values did not significantly differ from laboratory-based values (234±24.4 W vs. 234±25.5 W (CP1); P<0.001; limits of agreement [LOA], -10.98-10.8 W and 236±29.1 W vs. 235±24.1 W (CP2); P<0.001; [LOA], -13.88-17.3 W. Mean prediction errors for laboratory and field estimates were 2.2% (CP) and 27% (W'). Data suggest that employing all-out field tests lasting 3, 7 and 12 min has potential utility in the estimation of CP
    corecore