1,110 research outputs found

    Reconstruction of Laser Ultrasonic Wavefield Images from Reduced Sparse Measurements Using Compressed Sensing Aided Super-resolution

    Get PDF
    Laser ultrasonic imaging is attractive for damage visualization because of its noncontact nature, sensitiveness to local damages, and high spatial resolution . However, its field application is limited as the scanning with high spatial resolution demands a long scanning time. Recently, compressed sensing (CS) and super-resolution are gaining popularity in the image recovery field. CS estimates unmeasured pixels from measured parts, and SR recovers high spatial frequency information from low resolution images. Inspired by these techniques, a laser ultrasonic wavefield reconstruction technique is developed so that damage can be located and visualized with reduced number of ultrasonic measurements. First, a low spatial resolution ultrasonic wavefield image for a given inspection region is reconstructed from reduced number of ultrasonic measurements using CS. Here, the ultrasonic waves are generated using a pulsed laser, and measured at a fixed sensing point using a laser Doppler vibrometer (LDV). Then, a high spatial resolution ultrasonic wave image is recovered from the reconstructed low spatial resolution image using SR. The number of measurement points required for ultrasonic wavefield imaging is dramatically reduced. The performance of the proposed technique is evaluated through a numerical simulation and an experiment performed on a cracked aluminum plate

    New initiatives for transforming clinical research in Korea

    Get PDF
    Korea has continuously sought to improve its regulatory environment for clinical trials and has invested heavily in clinical trial infrastructure and technology since the early 2000’s. A strategic investment through the Korea National Enterprise for Clinical Trials (KoNECT) program began in 2007 and grew to encompass a network of regional clinical trial centers to promote clinical trial capabilities and human resource development. In early 2014, KoNECT became a permanent organization focused on the advancement of the country's clinical trial industry. This was followed by the establishment of the Korea Clinical Trials Global Initiative (KCGI) and the KoNECT Collaboration Center for global clinical trials (KCC). KCGI and KCC are now at the forefront of KoNECT’s efforts to promote higher operational efficiency in the country’s clinical trials. These new initiatives in clinical research are undertaking multichannel approaches to pursue a cohesive international collaboration model between government, industry and academia for the development of new treatments and improved patient care

    Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana

    Get PDF
    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YF-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta.112Ysciescopu

    A copula method for modeling directional dependence of genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes interact with each other as basic building blocks of life, forming a complicated network. The relationship between groups of genes with different functions can be represented as gene networks. With the deposition of huge microarray data sets in public domains, study on gene networking is now possible. In recent years, there has been an increasing interest in the reconstruction of gene networks from gene expression data. Recent work includes linear models, Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the most effective in constructing gene networks. A major problem with the Bayesian network approach is the excessive computational time. This problem is due to the interactive feature of the method that requires large search space. Since fitting a model by using the copulas does not require iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need for reference to extensive search spaces can be eliminated leading to manageable computational affords. Bayesian network approach produces a discretely expression of conditional probabilities. Discreteness of the characteristics is not required in the copula approach which involves use of uniform representation of the continuous random variables. Our method is able to overcome the limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary transformation.</p> <p>Results</p> <p>We analyzed the gene interactions for two gene data sets (one group is eight histone genes and the other group is 19 genes which include DNA polymerases, DNA helicase, type B cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a subunit of the cohesin complex) by adopting a measure of directional dependence based on a copula function. We have compared our results with those from other methods in the literature. Although microarray results show a transcriptional co-regulation pattern and do not imply that the gene products are physically interactive, this tight genetic connection may suggest that each gene product has either direct or indirect connections between the other gene products. Indeed, recent comprehensive analysis of a protein interaction map revealed that those histone genes are physically connected with each other, supporting the results obtained by our method.</p> <p>Conclusion</p> <p>The results illustrate that our method can be an alternative to Bayesian networks in modeling gene interactions. One advantage of our approach is that dependence between genes is not assumed to be linear. Another advantage is that our approach can detect directional dependence. We expect that our study may help to design artificial drug candidates, which can block or activate biologically meaningful pathways. Moreover, our copula approach can be extended to investigate the effects of local environments on protein-protein interactions. The copula mutual information approach will help to propose the new variant of ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks): an algorithm for the reconstruction of gene regulatory networks.</p

    Structural Analysis for Estimating Damage Behavior of Double Hull under Ice-Grounding Scenario Models

    Get PDF
    Aditya Rio Prabowo, Jung Min Sohn, Jung Hoon Byeon, Dong Myung Bae, Ahmad Fauzan Zakki, Bo Ca

    Efficient Privacy Preserving Logistic Regression Inference and Training

    Get PDF
    Recently, privacy-preserving logistic regression techniques on distributed data among several data owners drew attention in terms of their applicability in federated learning environment. Many of them have been built upon cryptographic primitives such as secure multiparty computations(MPC) and homomorphic encryptions(HE) to protect the privacy of data. The secure multiparty computation provides fast and secure unit operations for arithmetic and bit operations but they often does not scale with large data well enough due to large computation cost and communication overhead. From recent works, many HE primitives provide their operations in a batch sense so that the technique can be an appropriate choice in a big data environment. However computationally expensive operations such as ciphertext slot rotation or refreshment(so called bootstrapping) and large public key size are hurdles that hamper widespread of the technique in the industry-level environment. In this paper, we provide a new hybrid approach of a privacy-preserving logistic regression training and a inference, which utilizes both MPC and HE techniques to provide efficient and scalable solution while minimizing needs of key management and complexity of computation in encrypted state. Utilizing batch sense properties of HE, we present a method to securely compute multiplications of vectors and matrices using one HE multiplication, compared to the naive approach which requires linear number of multiplications regarding to the size of input data. We also show how we used a 2-party additive secret sharing scheme to control noises of expensive HE operations such as bootstrapping efficiently

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Full text link
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L

    Get PDF
    Background: Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects.Methods: This study examined the effect of ALBE on the release of ??-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-??B using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment.Results: We observed significant inhibition of ??-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 ??g/mL) suppressed not only the transcriptional activation of NF-??B, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes.Conclusions: These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-??B activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis. ?? 2011 Sohn et al; licensee BioMed Central Ltd

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Get PDF
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TIR-NB-LRR encoding neighbour

    Get PDF
    Plant innate immunity depends on the function of a large number of intracellular immune receptor proteins, the majority of which are structurally similar to mammalian nucleotidebinding oligomerization domain (NOD)-like receptor (NLR) proteins. CHILLING SENSITIVE 3 (CHS3) encodes an atypical Toll/Interleukin 1 Receptor (TIR)-type NLR protein with an additional Lin-11, Isl-1 and Mec-3 (LIM) domain at its C-terminus. The gain-of-function mutant allele chs3-2D exhibits severe dwarfism and constitutively activated defense responses, including enhanced resistance to virulent pathogens, high defence marker gene expression, and salicylic acid accumulation. To search for novel regulators involved in CHS3-mediated immune signaling, we conducted suppressor screens in the chs3-2D and chs3-2D pad4-1 genetic backgrounds. Alleles of sag101 and eds1-90 were isolated as complete suppressors of chs3-2D, and alleles of sgt1b were isolated as partial suppressors of chs3-2D pad4-1. These mutants suggest that SAG101, EDS1-90, and SGT1b are all positive regulators of CHS3-mediated defense signaling. Additionally, the TIR-type NLR-encoding CSA1 locus located genomically adjacent to CHS3 was found to be fully required for chs3-2D-mediated autoimmunity. CSA1 is located 3.9kb upstream of CHS3 and is transcribed in the opposite direction. Altogether, these data illustrate the distinct genetic requirements for CHS3-mediated defense signaling
    corecore