
Efficient Privacy Preserving Logistic Regression
Inference and Training

Kyoohyung Han1, Jinhyuck Jeong1, Jung Hoon Sohn1, and Yongha Son1

Samsung SDS IT R&D center, Korea
{kh89.han, jhyuck.jeong, junghoon.sohn, yongha.son}@samsung.com

Abstract. Recently, privacy-preserving logistic regression techniques on
distributed data among several data owners drew attention in terms of
their applicability in federated learning environment. Many of them have
been built upon cryptographic primitives such as secure multiparty com-
putations(MPC) and homomorphic encryptions(HE) to protect the pri-
vacy of data. The secure multiparty computation provides fast and se-
cure unit operations for arithmetic and bit operations but they often
does not scale with large data well enough due to large computation cost
and communication overhead. From recent works, many HE primitives
provide their operations in a batch sense so that the technique can be an
appropriate choice in a big data environment. However computationally
expensive operations such as ciphertext slot rotation or refreshment(so
called bootstrapping) and large public key size are hurdles that hamper
widespread of the technique in the industry-level environment.

In this paper, we provide a new hybrid approach of a privacy-preserving
logistic regression training and a inference, which utilizes both MPC and
HE techniques to provide efficient and scalable solution while minimizing
needs of key management and complexity of computation in encrypted
state. Utilizing batch sense properties of HE, we present a method to
securely compute multiplications of vectors and matrices using one HE
multiplication, compared to the naive approach which requires linear
number of multiplications regarding to the size of input data. We also
show how we used a 2-party additive secret sharing scheme to control
noises of expensive HE operations such as bootstrapping efficiently.

Keywords: Applications, Public-key Cryptography, Homomorphic En-
cryption, Logistic Regression

1 Introduction

Based on the growth of cryptography and machine learning techniques, privacy-
preserving logistic regression techniques drew many attention. In particular, ob-
taining a model on data separated among several data owners is one of main goals
in terms of federated learning environment on which the centralization of data
is forbidden and the training occurs locally for each data owner updating peri-
odically. However, it still remains many privacy issues such as the leakage from

2 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

the intermediate values given to the center for updating. Secure multiparty com-
putations(MPC) and homomorphic encryptions(HE) provides good solutions to
resolve this obstacle. Federated learning(FL) with differential privacy(DP) also
gives good solutions for the obstacle, but the algorithm highly depends on how
the data is distributed in various clients (e.g horizontal or vertical).

MPC supports multiple data owners to perform an evaluation of a certain
function on their inputs without revealing any information to any others except
for the output. In MPC scheme, the unit operations for arithmetic and bit op-
erations are performed efficiently and securely by a protocol for each, but when
one consider a very large data, the communication cost and time complexity
can be a problem for practice. For example, if whole logistic regression training
algorithm is protected via MPC scheme, the communication cost becomes larger
than the original raw data for training.

On the other hand, since the operations can be done in a batch-sense without
any protocol in almost HE schemes, solutions based HE are considerable on the
large data case. It requires, however, some operations such as bootstrapping and
rotations which are very often used in practice, are computationally expensive
and require a very large size for public keys. The authorization of public keys
can be also a hurdle for this solution.

...

evk, Enc(data)pk, data

Server

. . .

Passive Party

Passive Party

Passive Party

Active Party

sk, dataInput :

Output : LR Model

Enc(data1)

E
nc(data2)

Enc(data3)

Privacy Preserving LR Training Protocol

...
Enc(data)

Enc(predict)

Privacy Preserving LR Inference

Client

Client

Client

Fig. 1: Privacy Preserving Logistic Regression

The difficulty gets more complex if the data is separated among several par-
ties horizontally or vertically. In particular, for HE based solutions, it is not
trivial who should generate the secret key/public keys and how one can man-
age them to guarantee the privacy. In this paper, an efficient hybrid solution
for training of privacy-preserving logistic regression on distributed data is in-
troduced. As one can see in the Figure 1, it consists of a computation server,
multiple passive data owners, and one active data owners. The active party will
be a party who receive trained logistic regression model as a result, so active
party will do communication with server to get the model without knowing data

Efficient Privacy Preserving Logistic Regression Inference and Training 3

from other party. As we use MPC scheme, it needs to assume that the server
and the active party should not collude for privacy guarantee. After the ac-
tive party receives the model, this party can process logistic regression inference
service without knowing data from clients using our privacy preserving logistic
regression inference.

1.1 Our Contribution

The main contribution of our work is efficient privacy preserving logistic regres-
sion for distributed data. As you see at Figure 1, the distributed data is collected
into a server on encrypted state. The data collection is done using homomorphic
encryption, so the algorithm for collection does not depends on whether the data
is distributed in horizontal or vertical. After that, the server and an active party
together will do logistic regression model training protocol. In this case, as the
active party has secret key, we use a hybrid method which combines HE and
MPC. This collaboration of two methods will maximize the efficiency of both
method.

Matrix-Vector Multiplication

SIGMOID Evaluation

Matrix-Vector Multiplication

Update Weight Vector

Matrix-Vector Multiplication

SIGMOID Evaluation

Matrix-Vector Multiplication

Update Weight Vector

...Multi-Party Computation

Homomorphic Encryption

Fig. 2: Privacy Preserving Logistic Regression Overview

Logistic regression model training process consists of matrix-vector multi-
plications and computation of the sigmoid function. Figure 2 shows structure
of training algorithm (based on gradient decent method) and which method is
used to protect privacy of raw data. As homomorphic encryption support Single
Instruction Multiple Data (SIMD) operation, matrix-vector multiplication part
is computed using homomorphic encryption without leakage of raw data. And,
sigmoid part is computed using secure multi party computation based on addi-
tive share. Meanwhile, we also propose various optimization techniques to make
our system practical.

• First, we use special encoding method for efficient vector inner product and
matrix vector multiplication. This special encoding method puts values to
coefficient of polynomial. With the help of polynomial ring structure of ho-
momorphic encryption scheme, inner product and matrix vector multiplica-
tion can be computed on a single homomorphic multiplication. Furthermore,

4 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

we do not use homomorphic rotation so the size of public key that secret key
owner should generate is reduced a lot compare to the previous works.

• Second, we reduce the size of communication by homomorphic ciphertext
extraction. This extraction method is to extract necessary information which
is needed for decryption algorithm.

• Third, to improve the performance of privacy preserving protocol, we adapt
lazy homomorphic encryption and estimate performance to find optimal HE-
related parameters which gives the best timming result. As a result, logistic
regression training protocol takes 121 seconds per epoch in WAN network
which is in one country and 434 seconds per epoch in WAN network which
across the countries with 296, 412× 27 KDD cup data.

We remark that encryption of raw data is never sent to secret key owner in
our protocol. We always apply random masking when we need to send encrypted
data to secret key owner. We remark that security of our system comes from the
security of homomorphic encryption scheme and random masking.

1.2 Previous Works

To perform the training of logistic regression models while protecting the pri-
vacy of data, many approaches [1–14] have been built on various cryptographic
primitives such as MPC and HE. The comparison with related works which use
similar approach is in Table 1.

MPC approach. SecureML [1] proposed a 2-party privacy-preserving machine
learning framework which supports the training of linear regression, logistic re-
gression and neural networks in two way; purely HE-based one and its modified
one combining additionally with additive homomorphic encryption to reduce
the communication cost. They considered its security on semi-honest corrup-
tion only. ABY3 [3], which is extended from ABY [2], is a 3-party MPC frame-
work against malicious adversary. ASTRA [4] reduced the communication cost of
ABY3 suggesting an efficient multiplication protocol. However, it only provides
the inferences of linear regression and logistic regression. BLAZE [5] improved
this ASTRA such that the secure training algorithms of two regressions are pos-
sible more efficiently by optimizing the dot product operation between vectors.

HE approach. For HE-based solutions, Aono et al. [6,7] in 2016 proposed a solu-
tion for logistic regression training by approximating the cost function, evaluat-
ing it on encrypted data via an additive homomorphic encryption, and requiring
the client to find a minimum value among a lot of messages sent from the com-
puting server. Afterwards, through the competitions held by iDASH(integrating
Data for Analysis, Anonymization and Sharing) since 2014, many privacy-preserving
logistic regression based on HE [8–14] have been developed. In 2017, Bonte et
al. [8] proposed a HE-based solution adapting a simplified fixed Hessian method
as an optimization algorithm on FV scheme [15]. Chen et al. [9] used the 1-bit

Efficient Privacy Preserving Logistic Regression Inference and Training 5

Primitive
Leak Intermediate

Result
Performance Data Size

Aono et al. [6, 7] Additive HE Yes (apply DP) 20 min 108 × 40

Han et al. HE No
2 hours
17 hours

11, 982× 196
422, 108× 200

BLAZE MPC1 No
3.6 min (Preprocess)

1.8 min (online)
2 106, 574× 518

Ours HE+MPC No
2 min (WAN1)
7 min (WAN2)

3 290, 000× 27

Table 1: Comparison with previous works

gradient descent method to reduce the plaintext growth in the process on a mod-
ified FV scheme with rescaling and bootstrapping. Kim et al. [10], who showed
the best performance in the competition, employed a Nesterov’s accelerated gra-
dient descent method on CKKS scheme [16]. In 2018, Crawford et al. [11] utilized
an approximate closed-form of logistic regression and requires for the client to
solve a linear system of equations in plain after decryption. Carpov et al. [12]
provided a solution based on a framework called as Chimera [17, 18], which al-
lows for switching between CKKS scheme and TFHE scheme [19]. Besides, to
reduce further the number of iterations, Cheon et al. [13] proposed an ensem-
ble gradient descent method which results in an improvement in terms of speed
and memory. Kim et al. [14] deviced a least squares approximation of the logis-
tic regression for accuracy and efficiency with new packing and parallelization
method. However, although these give us compromising results, computation-
ally expensive operations like bootstrapping, rotations and the management of
public keys with large size still remains as a main obstacle in this approaches.

Hybrid approach. Combining the pros of MPC-based solutions and that of HE-
based solutions, a hybrid method called as Gazelle is proposed by Juvekar et
al. [20] to perform an inference of convolutional neural network (CNN) via an
additive HE and traditional 2-party MPC based on the garbled circuit. They
optimized the multiplication between matrices and vectors and improved the
convolutional routines using this optimization. It requires several homomorphic
multiplications and rotations whose number is linear in the size of matrix.

1.3 Comparison

For previous works that apply privacy enhancing technique for logistic regression
training, we compare those works with ours side by side.

1 Under the assumption that any two of three parties does not collude.
2 The performance of fourth and fifth case is for 1 epoch training
3 Each WAN setting is connection in Korea and connection between Korea and United

States.

6 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

Aono et al. Privacy-preserving logistic regression by Aono et al.used additive
homomorphic encryption and differential privacy. In this work, for a sample x
with length d, clients should pre-compute xi · xj and this makes the size of

encrypted data larger with factor (d+1)(d+4)
2d . We remark that pre-computing xi ·

xj is impossible when xi and xj does not belongs to one party. With help of pre-
computation, server only do summation of the given encrypted data and client
will find minimizer θ∗ = argminθ(Japprox(θ)) with decrypted θ value. Although
differential privacy (DP) is applied to θ, it is possible to leak information about
the input data as the security of DP is different with security of encryption
scheme (e.g IND-CPA).

Han et al. This work is homomorphic encryption only solution which does not
need any communication between server and client during training phase. For
that, they apply the bootstrapping technique for unlimited number of iterations.
As the bootstrapping process takes a huge computation time, it takes 2 hours
for training 11, 982× 196 size data with multi-threading (8-cores).

BLAZE This framework, built on MPC primitive, also provides a training of
logistic regression among two or three parties. Under the assumption that any
two of them does not collude, it performs the training very efficiently through
many protocols. For example, it takes 31.51 iterations for pre-processing phase
and 60.79 iterations for online phase per one minute with 500 features. However,
this is targeted to the case 2 or 3 parties and it is not trivial to be extended into
MPC among more than 3 parties.

2 Preliminary

2.1 Notations

In this paper, We use bold lowercase letters to denote vectors and bold uppercase
letters to denote matrices. For a positive integer q, [q] is defined by {1, 2, . . . , q}
and Zq = [−q/2, q/2)∩Z is a set of representatives of residues modulo q. Given
an integer m and a modulus q, [m]q means an element a ∈ [0, q − 1) such that

m ≡ a (mod q). For a finite set, a
$← D means a is uniformly chosen from

distribution D.
For a power-of-two N , we use R = Z[X]/(XN + 1) to denote the ring of

integers of a number field Q[X]/(XN + 1). Given a modulus q, Rq = R/qR is
the residue ring of R modulo q. An element a ∈ R[X]/(XN + 1) represented by

a(X) =
∑N−1
j=0 ajX

j of degree < N . For all polynomial a(X) ∈ R[X]/(XN + 1),
let us denote its coefficients by aj (j = 0, . . . , N − 1).

2.2 Logistic Regression

A logistic regression (LR) model is typically used to predict the probability
of occurrence in binary/multi-classified events such as pass/fail, win/lose, or

Efficient Privacy Preserving Logistic Regression Inference and Training 7

whether an image contains a cat, dog, bird, etc. We assume that the training data
consist of n samples (xi, yi) ∈ Rm−1 × {±1} where xi represents m− 1 features
of the i-th sample and yi the corresponding label. The goal of LR training is to
find an optimal vector w ∈ Rm, called model, which minimizes the loss function
L(w) defined as

L(w) =
1

n

n∑
i=1

log(1 + exp(−yi(1,xi)T ·w)).

Thanks to the gradient descent method, one can achieve the goal by computing
following procedure repeatedly with an initial w(0);

w(t+1) ← w(t) +
αt
n

∑
i∈I

σ(−zTi ·w(t))zi (1)

where I is a set of indices, zi = −yi(1,xi), αt is a learning rate at step t, and
the activation function σ(x) = 1/(1+exp(−x)) which is called sigmoid function.
This method is called as a full-batch when I = [n] and as a mini-batch when
I ([n]. Furthermore, it can be optimized using Nesterov’s accelerated gradient
method, which results following procedure with an initial w(0) = v(0);

w(t+1) ← v(t) +
αt
n

n∑
i=1

σ(−zTi ·w(t))zi (2)

v(t+1) ← (1− γt) ·w(t+1) + γt ·w(t) (3)

where 0 < γt < 1 is a moving average smoothing parameter. We remark that
future optimization method for gradient decent (e.g. Adam, AdaGrad, etc) con-
sists of division which makes hard to compute while preserving privacy, so we
only introduce the Nesterov’s accelerated gradient method.

As another representation, we can rephrase Equation 2 in matrices and vec-
tors: Let Z be a n × m matrix whose i-th row is zi for i ∈ [n] and let ZI a
submarix of Z whose rows are {zi}i∈I . Then, equation 2 can be expressed as

w(t+1) ← v(t) +
αt
n
· ZTI · σ(−ZI ·w(t)) (4)

where the domain of σ is component-wisely expanded into the vector space.

2.3 Homomorphic Encryption

Homomorphic encryption refers to an encryption scheme that for an encryption
c of a message m and a circuit f , one can efficiently and securely generate a
new encryption c∗ of f(m) without decrypting c. In particular, our system uses
an approximate HE scheme proposed by Cheon et al. [16], say CKKS scheme.
We skip the details of the scheme and only describe about the key property of

8 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

the scheme that we use. For detail equations and proofs about the scheme, we
refer to [16]. In addition, we use different packing method to the original CKKS
scheme, so we regard the plaintext space of CKKS scheme as R[X]/(XN + 1)
(not CN/2).

– Setup(1λ, 1L) : For the given security parameter λ and a depth bound L,
return public parameter pp.

– KeyGen(pp) : For the given public parameter pp, generate secret key sk,
public key pk, and evaluation key evk. return (sk, pk, evk).

– Enc(pk,m(x) ∈ R[X]/(XN +1), ∆) : For the given public key, plaintext, and
scale factor ∆, return a ciphertext ctxt ∈ R2

q.
– Dec(sk, ctxt, ∆): For the given secret key, ciphertext, and scale factor ∆,

return a plaintext m(x) ∈ R[X]/(XN + 1).

The scaling factor ∆ is related to the amount of precision of m(x) that the
ciphertext retains. To be more precise, the encryption of message polynomial
m(x) and the scaling factor ∆ outputs a ciphertext ctxt = (b(x), a(x)) ∈ R2

q

satisfying
b(x) + a(x) · s(x) = b[m(x) ·∆]qe mod q.

The decryption uses the equation to compute d(x) = b[m(x) · ∆]qe from the
ciphertext, and outputs d(x)/∆ after changing representation of each coefficient
di to range (−q/2, q/2], rather than [0, q). Regarding this, the correctness of
encryption/decryption process is defined approximately as following:

Dec(sk, Enc(pk,m(x), ∆), ∆) ' m(x) ∈ R[X]/(XN + 1).

Moreover, the CKKS scheme also supports approximate addition and mul-
tiplication algorithms between ciphertexts, or between plaintext and cipher-
text. Let ctxt1, ctxt2 are ciphertexts such that Dec(sk, ctxt1, ∆) = m1(x) and
Dec(sk, ctxt2, ∆) = m2(x).

– AddP(ctxt1,m2(x)) : for the given ciphertext ctxt1 and plaintext m2(x), re-
turn ctxt3 ∈ R2

q such that Dec(sk, ctxt3, ∆) ' m1(x) +m2(x).
– Add(ctxt1, ctxt2) : for the given ciphertext ctxt1, ctxt2, return ctxt3 ∈ R2

q such
that Dec(sk, ctxt3, ∆) ' m1(x) +m2(x).

– MultP(ctxt1,m2(x)) : for the given ciphertext ctxt1 and plaintext m2(x),
return ctxt2 ∈ R2

q/∆ such that Dec(sk, ctxt3, ∆) ' m1(x) ·m2(x).

– Mult(evk, ctxt1, ctxt2) : for the given ciphertext ctxt1, ctxt2, return ctxt3 ∈
R2
q/∆ such that Dec(sk, ctxt3, ∆) ' m1(x) ·m2(x).

One can see that after a multiplication of two ciphertext of modulus q (or
plain-ciphertext multiplication), the resulting ciphertext modulus is decreased
to modulus q/∆. Therefore, the multiplicative depth capacity depends on the
choice of initial modulus q and ∆. Throughout this paper, we only require only
one multiplicative depth and fixed scaling factor ∆, so there are only two pos-
sible ciphertext modulus: initial encryption modulus q and after-multiplication
modulus q/∆.

Efficient Privacy Preserving Logistic Regression Inference and Training 9

Ring-Learning with Errors The security of the CKKS scheme depends on the
hardness of Ring-Learning with Errors (RLWE) problem below:

Definition 2.1 (Ring LWE (RLWE) Problem) For the given a power-of-
two N , a modulus q, and some distributions χs and χe over R for secret and
noise respectively, the problem is to distinguish between the two distributions
(a(X), a(X) ·s(X)+e(X) and (a(X), u(X)) where a(X)← Rq, s(X)← Rq and
u(X)← Rq.

As there are various works about the security of Ring LWE problem, we will
omit it and just introduce the problem.

2.4 Multi Party Computation: 2-Party Additive Sharing

We briefly introduce a 2-party secure MPC constructed with an additive secret
sharing and how to perform unit operations such as addition, multiplication in
this scheme. Assume two parties P0 and P1 have inputs x and y in Zt respectively
for a modulus t and they want to compute [x+ y]t and [x · y]t without revealing
the inputs. First let [x] = (x0, x1) mean that x is split into two shares xi(= 0, 1)
such that x = x0 + x1 mod t and each party Pi has xi not knowing the other
x1−i for i = 0, 1. Then, from [x] = (x0, x1) and [y] = (y0, y1), one can compute

– [x] + [y] := [x+ y] = (z0, z1) by z0 = x0 + y0 and z1 = x1 + y1,
– c[x] := [cx] = (z0, z1) for some constant c by z0 = cx0 and z1 = cx1.

To get [xy] = (z0, z1), we need more assumption that a multiplication triplet
([a], [b], [c]) have already been shared with c = a·b mod t. Then, one can compute

– [xy] = (z0, z1) by the following:

1. Compute [x+ a], [y + b], and reveal these values x′ = x+ a, y′ = y + b.
Then, we can generate x′y′ and reshare [x′y′].

2. Compute [xy] by [x′y′]− y′[a]− x′[b]− [c].

To collaboratively use it with CKKS scheme, we need to modify this possible to
support real number not modulus integer. The real number can be converted to
an integer using quantization with some scale factor ∆, so the support for real
number can be obtained rescaling functionality in additive shared state. This
functionality is directly from Theorem 2.2 below:

Theorem 2.2 (Theorem 1 from [1]) In field Z2` , let x ∈ [0, 2`x]∪[2`−2`x , 2`),
where ` > `x+1 and given shares 〈x〉0, 〈x〉1 of x, let 〈bxc〉0 = b〈x〉0c and 〈bxc〉1 =
2`−b2`−〈x〉1c. Then with probability 1−2`x+1−`, 〈bxc〉0+〈bxc〉1 = bxc+ε mod t
for |ε| ≤ 1, where b·c denotes truncation by `D ≤ `x bits.

As authors of [1] mentioned, this theorem can be extended to a prime field Zt
case by replacing 2` with t. Furthermore, the truncation also can be extended to
bx/∆c for an integer ∆ ∈ Z by replacing 2`D with ∆. As a result, this theorem

10 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

can be used to extend operations on Zt to operations on real field R by using
scale factor ∆� t.

For example, an additive share (x0, x1) of 0.1 means that x0 + x1 = b0.1 ·
∆c mod t for scale factor ∆. For the given an additive share (x0, x1) and (y0, y1)
of 0.1 and 0.2 respectively, both party compute [xy] = (z0, z1) as described
above. After that, we truncate z using Theorem 2.2 in additive shared state.
Then, 〈bzc〉0+〈bzc〉1 = bzc+ε mod t which is approximate value of b0.1 ·0.2 ·∆c.
So, now, we can compute real number addition and multiplication in additive
shared state.

Remark 2.3 (Multiplication Triplet) There are various method to generate
multiplication triplet [21–23]. As we are already using HE scheme (SEAL li-
brary), we use generation method from [21] in our experiment. We note that this
generation is independent to the input data, so this process will be considered as
off-line phase.

3 Building Blocks

In this section, we first introduce various techniques that we use to optimize the
complexity and communication cost in our method.

3.1 Inner Product

Here, we will describe efficient packing method in [24] for computing inner pro-
duction computation using polynomial ring structure. The key idea of their work
comes from the fact that the i-th coefficient of a(X) · b(X) =

∑n+m−1
i=0 ci ·Xi ∈

R[X]/(XN + 1) is

ci = a0 · bi + a1 · bi−1 + · · ·+ ai−1 · b1 + ai · b0
for all i where a(X) =

∑n
i=0 ai ·Xi and b(X) =

∑m
i=0 bi ·Xi. For more detailed,

let a(X) =
∑N−1
i=0 aiX

i and b(X) =
∑N−1
i=0 biX

i be elements in R[X]/(XN + 1).
Then, since XN = −1 in this polynomial ring, the constant term of c(X) =
(a ·b)(X) is the sum of a0b0 and −a1bN−1−· · ·−aN−1b1 which can be rephrased
by

〈(a0, a1, . . . , aN−1), (b0,−bN−1,−bN−2, . . . ,−b1)〉.
From this observation, they employ two packing method for vector to accomplish
a secure inner product operation:

– pm1(v): For a given length m ≤ N vector v, return a polynomial
∑m−1
i=0 vi ·

Xi ∈ R[X]/(XN + 1).
– pm2(v): For a given length m ≤ N vector v, return a polynomial v0 −∑m−1

i=1 vi ·XN−i ∈ R[X]/(XN + 1).

Now, we have 〈a,b〉 = (a · b)0 if a(X) ← pm1(a) and b(X) ← pm2(b) for
a = (a0, . . . , am−1) and b = (b0, . . . , bm−1). As a result, only one multiplica-
tion on encrypted data is required to compute securely an inner product while
m multiplications are required naively.

Efficient Privacy Preserving Logistic Regression Inference and Training 11

3.2 Matrix Vector Multiplication

In this section, we will describe efficient methods to compute both M · v and
MT ·v for encrypted vector v because both operations are necessary for logistic
regression training. The trivial method is to encode each column and row of
M separately, and use the method in 3.1. But, this method makes requires at
least column and row numbers of polynomials to encode a matrix, and column
or row numbers of polynomial multiplication to perform matrix multiplication.
The matrix is corresponding to training data in our privacy-preserving logistic
regression training algorithm, so it requires very large size of encoding leading
to an inefficiency.

Instead, our method in this section encodes the matrix M in batch manner
(not in row or column manner) which supports both kinds of matrix-vector
multiplications M ·v and MT ·v. This can be done by varying the encoding of v
of which size usually much smaller than that of matrix. Basically, we use a skew-
cyclic property of the polynomial ring R[X]/(XN + 1); For a(X) ∈ R[X]/(XN +
1), the corresponding vector of Xi · a(X) is

(−aN−i, . . . ,−aN−1, a0, a1, . . . , aN−i−1).

To achieve our goal, we define following three encoding methods for vector and
matrix inputs:

– EcdVec1(v): For a given lengthm vector v, return a polynomial v0−
∑m−1
i=1 vi·

XN−i ∈ R[X]/(XN + 1).
– EcdVec2(v, n): For a given length m vector v, return a polynomial v0 −∑m−1

i=1 vi ·XN−n·i ∈ R[X]/(XN + 1).

– EcdMat(M , ∆): For a given n×mmatrixM , return a polynomial
∑n−1
i=0

∑m−1
j=0 Mi,j ·

Xm·i+j ∈ R[X]/(XN + 1).

Here, we assume that the length of vector and the size of matrix (= m · n) is
smaller than N . Following two theorems show how these encoding methods can
be used to compute M · v and MT · v in encrypted state.

Theorem 3.1 For the given length m vector v and n×m matrix M , let a(x) =
EcdVec1(v) and b(x) = EcdMat(M), then

cm·i = 〈v, Rowi(M)〉

for 0 ≤ i < n and a(x) · b(x) =
∑N−1
i=0 ci ·Xi.

Proof. By the definition of encoding method, a(X) = v0−
∑n−1
i=1 vi ·XN−m·i and

b(X) =
∑n−1
i=0

∑m−1
j=0 Mi,j ·Xm·i+j, so

c(X) = v0 · b(X)−
m−1∑
i=1

n−1∑
j=0

m−1∑
k=0

vi ·Mj,k ·XN−i+m·j+k

= v0 · b(X) +

m−1∑
i=1

n−1∑
j=0

m−1∑
k=0

vi ·Mj,k ·Xm·j+(k−i)

12 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

for c(X) = a(X) · b(X). Now we can compute (m · i)-th coefficient of c(X) as
follows:

cm·i = v0 ·Mi,0 +

m−1∑
j=1

vj ·Mi,j = 〈v, Rowi(M)〉

for 0 ≤ i < n.

Theorem 3.2 For the given length n vector v and n×m matrix M , let v(x) =
EcdVec2(v,m) and M(x) = EcdMat(M), then

ri = 〈v, Coli(M)〉

for 0 ≤ i < m and v(x) ·M(x) =
∑N−1
i=0 ri ·Xi.

Proof. By the definition of encoding method, a(X) = v0 −
∑m−1
i=1 vi ·XN−i and

b(X) =
∑n−1
i=0

∑m−1
j=0 Mi,j ·Xm·i+j, so

r(X) = v0 · b(X)−
n−1∑
i=1

n−1∑
j=0

m−1∑
k=0

vi ·Mj,k ·XN+m·(j−i)+k

= v0 · b(X) +

n−1∑
i=1

n−1∑
j=0

m−1∑
k=0

vi ·Mj,k ·Xm·(i−j)+k

for r(X) = a(X) · b(X). Now we can compute i-th coefficient of r(X) as follows:

ci = v0 ·M0,i +

n−1∑
j=1

vj ·Mj,i = 〈v, Coli(M)〉

for 0 ≤ i < m.

When n×m matrix M , length m vector v, and length n vector w are given,
a single multiplication in R[X]/(XN + 1) between EcdVec1(v) and EcdMat(M)
gives a polynomial which has i-th element of M ·v at (m ·i)-th coefficient for 0 ≤
i < m. And, a single multiplication in R[X]/(XN + 1) between EcdVec2(w,m)
and EcdMat(M) gives a polynomial which has i-th element of M t · w at i-th
coefficient for 0 ≤ i < n.

3.3 Extraction of Coefficients

As one can see in Theorem 3.1 and Theorem 3.2, only small number of coefficients
have valid meanings in terms of inner product and matrix-vector multiplication.
We can extract necessary information that are needed to decrypt those coeffi-
cients, so that it reduce the communication costs in our method.

To see how it works, recall that the decryption procedure recovers a polyno-
mial d(x) := b(x) + a(x) · s(x) ∈ Rq for a secret polynomial s(x), and then i-th

Efficient Privacy Preserving Logistic Regression Inference and Training 13

coefficient of message polynomial m(x) only depends on i-th coefficient of d(x).
In this regard, we define the following in order to extract i-th coefficient of d(x).

SkewRoti(s) := (si, · · · , s0,−sN−1, · · · ,−si+1) ∈ ZNq

for 0 ≤ i < N . Using this function, the i-th coefficient a(x) · s(x) is represented
as 〈a, SkewRoti(s)〉. Therefore, someone who knows s can compute i-th coeffi-
cient of b(x) + a(x) · s(x) when bi and a(x) are given. This property is useful
when we extend multiple coefficients at once, as secret key owner can compute
approximation of several coefficient mis given corresponding bis in Zq and only
one a(x) ∈ Rq. We can define coefficient extraction and decryption algorithm as
following:

– Extract(ctxt,K): For a ciphertext ctxt = (b(x), a(x)) and an ordered set
K = {k1, · · · , k`}, return

ctxtExt = ((bk1 , · · · , bk`), a(x)) ∈ Z`q ×Rq.

– Dec∗(sk, ctxtExt,K): For the given extracted ciphertext ctxtExt = (b, a(x)),
an ordered index set K = {k1, · · · , k`}, and a secret key vector sk = s, com-
pute

mi = bi + 〈a, SkewRotki(s)〉 mod q (5)

for each i. Return a vector (m1, · · · ,m`) ∈ Z`q

We intentionally let Dec∗ return a vector of modulus integer Zq, not a real-
coefficient polynomial. This is for a link with additive-share MPC that also
uses an modulus integer, rather than a real number. Section 4 will address this
procedure in detail.

The extracted ciphertext size is reduced to (N + `) · log2 q, whereas the as-is
ciphertext size is 2N · log2 q. We remark that ` would be much smaller than N
in case of our privacy-preserving logistic regression training. As a result, this
technique makes communication cost almost half smaller than before.

Remark 3.3 (Complexity of Dec∗) Naive complexity of Dec∗ becomes |K|·N
which is linearly growth to size of ordered set K. As 〈a, SkewRotki(s)〉 is same
as ki-th coefficient of a(x) · s(x) ∈ Rq, we can use NTT (Number Theoretic
Transform) algorithm to compute multiplication of a(x) and s(x). The complexity
of polynomial multiplication is 2 · logN · N + N (2 NTT algorithm + dyadic
multiplication), so we can choose one of the methods depends on the size of K.

4 Hybrid with Multi Party Computation and
Homomorphic Encryption

In the previous section, we introduce various techniques about homomorphic
encryption and multi party computation for real number data. As we use hybrid

14 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

approach that combines those methods in our privacy preserving logistic regres-
sion training protocol, we need to connect homomorphic encryption and multi
party computation. For this connection, we need some previous definition to be
modified to plaintext space as Zq instead of R. This is possible since the CKKS
encryption of a real-coefficient polynomial f(x) involves a conversion of f(x) to
[bf(x) ·∆e]q ∈ Zq[X]/(XN + 1). Therefore, we define encoding, encryption, and
decryption methods to deal with Zq plaintext space.

– EcdVec1∗(v): For a given length m vector v in Zmq , return a polynomial

v0 −
∑m−1
i=1 vi ·XN−i ∈ Zq[X]/(XN + 1).

– EcdVec2∗(v, n): For a given length m vector v in Zmq , return a polynomial

v0 −
∑m−1
i=1 vi ·XN−n·i ∈ Zq[X]/(XN + 1).

– Enc∗(pk,m(x) ∈ Zq[X]/(XN+1)): For the given public key, plaintext, return
a ciphertext ctxt = (b(x), a(x)) ∈ R2

q such that b(x) + a(x) · s(x) ≡q m(x)
for secret key polynomial s(x).

In our protocol, a party who receive the ciphertext has secret key, and will
decrypt the ciphertext. So we need to apply random masking to protect privacy
of our data so that the secret key party cannot learn nothing about raw data
during our protocol.

– AddMask(ctxtExt, r): For a given ctxtExt = (b, a(x)), return (b + r, a(x)).

Furthermore, for a convenient explanation, we added a function to convert
message in Zq to real number as following:

– ZqToReal(m, q,∆) : if m > (q/2), return (m− q)/∆ and return m/∆ other-
wise. Here the division is in R.

4.1 Modulus and Scale Factor Switching in MPC

In this section, t stands for modulus for additive share based multi party compu-
tation and q would be ciphertext modulus for homomorphic encryption. As we
used different modulus and scale factor in HE and MPC for efficiency, we need
to introduce modulus switching and scale factor switching method in additive
state.

– MSq1→q2(m): return bm · (q2/q1)e.
– SFS∆1→∆2

(m,α): For δ = ∆2

∆1
, compute and return

m′ =

{
round(m · δ) mod t if α = 1

t− round((t−m) · δ) mod t if α = 2

For the correctness of those two algorithms,we suppose two parties have
additive share (m1,m2) ofm with modulus q1 which meansm1+m2 = m mod q1.

Efficient Privacy Preserving Logistic Regression Inference and Training 15

If both party run MSq1→q2 for mi, the result becomes the additive share of bm ·
(q2/q1)e+ ε with modulus q2 for |ε| < 2.

b m1 · (q2/q1)e+ bm2 · (q2/q1)e
= m · (q2/q1) + ε1 + ε2

= bm · (q2/q1)e+ ε1 + ε2 + ε3

for |εi| < 0.5 (i = 1, 2, 3). As our m will be bmsg ·∆e for real number message
msg and sufficiently large scale factor ∆, the small error less than 2 goes to 2/∆
when we consider the real number representation.

In case of SFS function, the correctness is directly from Theorem 2.2. As
a result, if two party run SFS∆1→∆2

(m1, 2) and SFS∆1→∆2
(m2, 2) respectively,

the result becomes the additive share of bm · (∆2/∆1)e + ε for |ε| ≤ 1. Here
bm·(∆2/∆1)e is quantization of real number r with scale factor ∆2 if the original
m is quantization of real number r with scale factor ∆1.

4.2 Conversion between HE and MPC

Based on the modulus and scale factor switching method, we proposed conversion
between HE and MPC executed by two parties, as Algorithm 1 and Algorithm 2.
Hereafter, we denote a (ciphertext) modulus and scaling factor of HE encryption
by q and ∆, and them of MPC by t and ∆′. Moreover we assume that those
parameters are agreed in advance, and omit that parameters in each party’s
input.

We assume where Party 1 has a HE ciphertext ctxt ∈ R2
q of a message m(x) ∈

R[X]/(XN + 1) with scaling factor ∆, where m(x) retains a meaningful vector
m ∈ R` in some coefficients. Let K be the ordered index set that represents such
coefficient positions of m(x). Then HE2MPC, given as inputs ctxt and K, outputs
additive share (m0,m1) of the vector [bm ·∆′e]t over Zt.

Two parties then can perform real number operations in additive-shared
state as described in Section 2.4. By denoting the desired output yi = f(mi)
for each component, two parties reach to additive shares of [by ·∆′e]t ∈ Z`t, say
(y0,y1). MPC2HE, given as input y0 ∈ Z`t and y1 ∈ Z`t and α ∈ {1, 2}, lets two
parties jointly convert them into a HE ciphertext of EcdVec1(∆ · y) if α = 1,
and EcdVec2(∆ · y) if α = 2.

HE to MPC. Party 1 extracts a ciphertext of indexes in K that is decrypted (by
Dec*) to ∆ ·m ∈ Z`q. Then it subtracts a random vector r ∈ Z`q to the ciphertext
and store the vector r, which serves as one additive share of m. Party 1 sends
the ciphertext to Party 2 and then Party 2 obtains another additive share m−r
over Z`q by decrypting it. After then each party converts its own additive share
to modulus t and scaling factor ∆′. The detailed algorithm is given by Algorithm
1.

16 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

Algorithm 1 HE2MPC

Party 1 Party 2

Input .

Ciphertext ctxt ∈ R2
q

an ordered set K of size `

Protocol .

ctxt′ ← Extract(ctxt,K)
for 0 ≤ i < ` do

ri
$← Zq

end for
ctxt′′ ← AddMask(ctxt′, r)
Send ctxt′′, K

m2 ← Dec∗(ctxt′′, sk,K)
for 0 ≤ i < ` do

m′ = MSq→t(ri)
vi = SFS∆· t

q
→∆′(m′, 1)

end for

for 0 ≤ i < ` do
m′ = MSq→t(m2,i)
wi = SFS∆· t

q
→∆′(m′, 2)

end for

Output .

v ∈ Z`t w ∈ Z`t

MPC to HE. Each party converts its own additive share to modulus q and
scaling factor ∆ to enable HE encryption. Then Party 2 encrypts its additive
share y1 ∈ Z`q according to α, and send the ciphertext to Party 1 along with

α. Party 1 then convert its additive share y0 ∈ Z`q into R according to α, and
homomorphically add it to have the final ciphertext. The detailed algorithm is
given by Algorithm 2.

4.3 Protocol-based Bootstrapping

As mentioned in introduction of CKKS scheme, after some multiplicative depth,
HE requires an expensive operation called bootstrapping that recovers the depth
capacity. In this regard, we can build a protocol that recover the multiplicative
depth as an application of conversions between HE and MPC. Moreover, this
bootstrapping can rearrange the coefficients of message polynomial by modifying
its input. This is especially useful for the resulting ciphertext of matrix-vector
multiplication of Section 3.2 that has ruined vector packing shape.

Protocol-based bootstrapping can be done by consecutive execution of HE2MPC
and MPC2HE. However for bootstrapping purpose it is unnecessary to go through
additive share to modulus t and scaling factor ∆′, and we just perform only one
MS and SFS. The detailed algorithm is given by Algorithm 3.

4.4 Security of Our protocols

During all three protocols that we suggest, each party would obtain additive
share or HE encryption of target message, say m ∈ Zt. Since additive shares of

Efficient Privacy Preserving Logistic Regression Inference and Training 17

Algorithm 2 MPC2HE

Party 1 Party 2

Input .

m1 ∈ Z`t m2 ∈ Z`t, α ∈ {1, 2}
Protocol .

for 0 ≤ i < ` do
m′ = MSt→q(m1,i)
vi = SFS∆′· q

t
→∆(m′, 1)

end for

for 0 ≤ i < ` do
m′ = MSt→q(m2,i)
wi = SFS∆′· q

t
→∆(m′, 2)

end for
if α = 1 then

m2(x)← EcdVec1∗(w)
else

m2(x)← EcdVec2∗(w)
end if
m2(x)← EcdVec1∗(w)
ctxt2 ← Enc∗(pk,m2(x))
Send (α, ctxt2)

if α = 1 then
m1(x)← EcdVec1∗(v)

else
m1(x)← EcdVec2∗(v)

end if
ctxt = AddP(m1(x), ctxt2)

Output .

Ciphertext ctxt ∈ R2
q

m ∈ Zt is of the form m− r and r for a uniform-randomly sampled r ∈ Zt, each
additive share seems uniformly distributed over Zt on one party’s view regardless
of the message m. Moreover, assuming the hardness of RLWE problem, the
CKKS ciphertext is also indistinguishable from uniform element in R2

q. That
is, each party only learns uniformly random elements (on its view) from the
protocol execution, from which we conclude the security of our protocol.

5 Logistic Regression Inference

Using building block algorithms in the previous section, we can configure a two-
party protocol for secure logistic regression inference between a server and a
client. We assume the server holds a logistic regression model in plain, and it
wants to provide a secure logistic regression inference service for the client with
input x. For that, the client can sends an encryption of its input using homo-
morphic encryption using its own secret key, and the server performs the logistic
regression inference algorithm in encrypted state. Finally the encrypted result
is sent back to the client so that it obtains the inference result by decrypting it.
Our protocol applies our building blocks on the flow above, which we elaborate
below.

18 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

Algorithm 3 PBoot

Party 1 Party 2

Input .

Ciphertext ctxt ∈ R2
q/∆

an ordered set K of size ` α ∈ {1, 2}
Protocol .

ctxt′ ← Extract(ctxt,K)
for 0 ≤ i < ` do

ri
$← Zq

end for
ctxt′′ ← AddMask(ctxt′, r)
Send ctxt′′, K

m2 ← Dec∗(ctxt′′, sk,K)
for 0 ≤ i < ` do

m′ = MSq/∆→q(ri)
vi = SFS∆2→∆(m′, 1)

end for

for 0 ≤ i < ` do
m′ = MSq/∆→t(m2,i)
wi = SFS∆2→∆(m′, 2)

end for
if α = 1 then

m2(x)← EcdVec1∗(w)
else

m2(x)← EcdVec2∗(w)
end if
m2(x)← EcdVec1∗(w)
ctxt2 ← Enc∗(pk,m2(x))
Send (α, ctxt2)

if α = 1 then
m1(x)← EcdVec1∗(v)

else
m1(x)← EcdVec2∗(v)

end if
ctxt = AddP(m1(x), ctxt2)

Output .

Ciphertext ctxt ∈ R2
q

Recall that the logistic regression inference consists of one inner product
d = 〈x,w〉 where x is the client input vector, and w is the model vector, and
subsequent activation function evaluation σ(d) := 1/(1 + exp(−d)). First for
the inner product, we apply Section 3.1 so that it can be done by only one
ciphertext multiplication. Thus we let the client to encrypt its message vector v
after encoding it into pm2(v), and the server performs inner product by encoding
its model w into pm1(w).

For the remaining sigmoid evaluation, we simply let the client perform it,
rather than letting the server complete it in encrypted state. This greatly re-
duces server-side cost, as a sigmoid evaluation on encrypted state requires several
multiplications between ciphertexts and plaintexts. On security side, since the

Efficient Privacy Preserving Logistic Regression Inference and Training 19

Algorithm 4 Logistic Regression Inference

Server Client

Input .

w ∈ Rm+1 (1,x) ∈ Rm+1

w(x)←pm1(w) v(x)←pm2(v)

Online .

Generate sk
ctxt← Enc(pk, v(x),∆)
Send ctxt

ctxt′ ← MultP(w(x), ctxt)
ctxt′′ ← Extract(ctxt′, {0})
Send ctxt′′

Terminate .

d← Dec∗(sk, ctxt′′, {0})
if d > q

2∆
then

d = d− q
∆

end if
d = d/∆
Compute σ(d)

sigmoid function is one-to-one, the amount of information that the client finally
receives is equivalent for both cases, and hence this change causes no harm on
security.

We also optimize the communication cost of each side. For the input cipher-
text transmission phase, we remark that the server only performs one MultPlain
that can be done without any additional key (or evaluation key). Therefore the
client only need to send a ciphertext of its input vector only, which is contrast-
ing to usual homomorphic encryption-based solution where the secret key owner
needs to generate and send evaluation keys. Considering there are possibly many
clients who manage each own secret key, this would be indeed helpful for each
client and the central server. For the resulting ciphertext transmission phase, we
note that only the first coefficient of pm1(w) · pm2(v) is meaningful. Then we let
the server to send a ciphertext of the first coefficient only, which can be easily
done by Extract algorithm. Algorithm 4 describes the whole procedure.

5.1 Security and Model Privacy

As the server only receives the ciphertext of client input, it is indistinguishable
from uniform elements, under RLWE assumption. This enables the server to
provide a logistic regression inference service without knowing the clients input.

Unfortunately, our protocol itself cannot prevent the client from learning
the model vector. If someone succeeds to obtain more than m − 1 numbers of
inference results of independent inputs (e.g. one client can ask m queries, or
m clients can collude), the model vector w could be easily recovered by simple
linear algebra.

20 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

We remark that this model leakage is unavoidable as long as the client obtain
the exact value of inner product between its input v and the model w. Thus
it can be mitigated by controlling the server side output, and we give some
examples below.

– One may limit the number of queries of each client, but this cannot prevent
the collusion of clients.

– If the binary classification result (rather than exact sigmoid evaluation) is
sufficient, multiply a random positive number on server-side ciphertext could
hide the inner product value.

– The server may frequently update its model to make client-side recovered
model is useless.

However, we will not deep dive into much details as modifying logistic regression
to have model privacy is beyond our interest, and leave it as an open problem
for interest reader.

6 Logistic Regression Training

We also build a two-party protocol for secure logistic regression training, where
one party (hereafter server) retains encrypted data and the other party (hereafter
client) retains a secret key of homomorphic encryption. As a result, the client will
obtain the logistic regression model vector corresponding to the data, without
obtaining actual value of the data that the server retains.

Our protocol uses Nesterov’s accelerated gradient method with mini-batch,
and it is sufficient to describe the details of secure execution of one update
procedure from v(t) and w(t) to v(t+1) and w(t+1), which is precisely represented
by Equation 4 followed by 3:

w(t+1) ← v(t) +
αt
n
· ZTI · σ(−ZI ·w(t)),

v(t+1) ← (1− γt) ·w(t+1) + γt ·w(t).

In the server, ZI would be encrypted in several ciphertexts where each ci-
phertext encrypts n × m size submatrices Zi,j whose size (m · n) is no more
than the slot size N. By writing the size of ZI by NI ×MI , the index i and
j run through 0 ≤ i < n′ := dNI/ne and 0 ≤ j < m′ = dMI/me. The corre-

sponding weight vectors v(t) ∈ RMI and w(t) ∈ RMI are also split into v
(t)
j and

w
(t)
j for 0 ≤ j < m′. See Figure 3 for graphical understanding. The choice of

submatrix size m and n would be explained later in this section, as the total
communication and time cost depends on them. We denote by ctxtZi,j

a cipher-
text that encrypt EcdMat(Zi,j), and by ctxt

v
(t)
j

and ctxt
w

(t)
j

a ciphertext that

encrypt EcdVec1(v
(t)
j) and EcdVec1(w

(t)
j), respectively. Note that we start from

ciphertexts that encrypt v(t) and w(t) in EcdVec1 manner. Thus, in order to
repeat one iteration, our protocol has to finish with the same encoding manner
EcdVec1.

Efficient Privacy Preserving Logistic Regression Inference and Training 21

· · ·

Encrypted in One Ciphertext

m

n

MI

NI

ZI

v

m

w

m

Fig. 3: Encrypted Structure of ZI , v, and w

6.1 Protocol Description

We elaborate detailed procedures for our training protocol, and algorithmic de-
scription is given by Algorithm 5. We also assume that each party is agreed with
the modulus q and t, and scaling factors ∆ and ∆′.

Compute x = ZI · w(t): By writing xi =
∑

0≤j<m′ Zi,j · wj , the vector x
can be represented by a concatenation (x0|| · · · ||xn′). We compute each matrix-
vector multiplication xi,j = Zi,j ·wj by one homomorphic multiplication: From
its definition Mult(evk, ctxtZi,j

, ctxt
w

(t)
j

), it outputs a ciphertext that encrypts

a real-coefficient polynomial x̃(x) := EcdMat(Zi,j) · EcdVec1(w
(t)
j). By Theorem

3.1, we have xi,j = (x̃0, x̃m, · · · , x̃m·n) = Zi,j · w(t)
j , and we call the output

ciphertext ctxtxi,j
. Note that all ctxtxi,j

have the same modulus and packing
shape (see Figure 5), we obtain a ciphertext ctxtxi

that encrypts xi that by
adding all ciphertexts ctxtxi,j

for a fixed i.

Compute y = −αt

n
· σ(x): Since ctxtxi is an output of homomorphic multi-

plication, it has decreased modulus q/∆. Thus further y computation is done by
multi-party computation.

For that, first the server and client execute a protocol HE2MPC to convert ctxtxi

into an additive shares xi,0 ∈ Zmt and xi,1 ∈ Zmt . Since additive share supports
addition and multiplication, we need to approximate σ into a polynomial. We use
degree 7 approximation of σ over [−8, 8] obtained by Chebyshev approximation

22 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

[25], precisely given by

σapp(x) = 0.5 + 1.556384 · x
8
− 2.91484 ·

(x
8

)3
+2.96762 ·

(x
8

)5
− 1.109504 ·

(x
8

)7
.

See Figure 4 for abstract shapes.

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

sigmoid

f(x)

Fig. 4: Polynomial Approximation of Sigmoid over [−8, 8]

As a result, the server and client obtain yi,0 ∈ Zmt and yi,1 ∈ Zmt . Finally
two parties execute a protocol MPC2HE, and then the server obtain a ciphertext
ctxtyi

of EcdVec2 in modulus q.

Compute g = ZTI · y: This can be done almost similarly to x = Z · w(t),
but now Mult computes ZTi,j · yi because ctxtyi

encrypts EcdVec2(yi). We rep-

resent g by a concatenation (g0|| · · · ||gm′) where gj =
∑

0≤i<n′ ZTi,j · yi. Again

one homomorphic multiplication computes gi,j = ZTi,j · yi. From its defini-
tion Mult(evk, ctxtZi,j

, ctxtyi
), it outputs a ciphertext that encrypts g̃(x) :=

EcdMat(Zi,j) · EcdVec2(yi). By Theorem 3.2, we know gi,j = (g̃0, g̃1, · · · , g̃m) =

ZTi,j · y
(t)
i and we call the output ciphertext ctxtgi,j . Finally we sum-up ctxtgi,j s

while fixing i, which gives ctxtgj
.

Compute w(t+1) = v(t) + g: Toward v
(t+1)
j , it only remains to add gj and

v
(t)
j . However, since ctxtgj

and ctxt
v
(t)
j

have different modulus and packing shape

(see Figure 5), we cannot homomorphically add them. Then the server calls
PBoot with the client to have ctxtgj in modulus q that also has a packing shape
matching with ctxt

v
(t)
j
, and finally Add(ctxtgj , ctxtv(t)

j
) yields ctxt

w
(t+1)
j

. On the

Efficient Privacy Preserving Logistic Regression Inference and Training 23

· · · · · ·w1 −w2−w3−w40 0 0 0 0 0 0 0 0 0 w

1st − coefficient N th − coefficient

· · · · · ·v1 −v2−v3−v40 0 0 0 0 0 0 0 0 0 v

· · · · · ·x1 ???? ? ? ? ? x2 ? ? ? ? x = Z · w

gap m

y = σ(x)· · · · · ·y1 0000 0 0 0 0 0 0 0 0 −y2

(N −m)th − coefficient

· · · · · ·z1 ???z2 z3 z4 z5 z6 ? ? ? ? ? z = ZT · y

g = α · z· · · · · ·g1 −g2−g3−g40 0 0 0 0 0 0 0 0 0

Fig. 5: Packing shapes of various vectors

final iteration, the server ends protocol by sending ctxt
w

(t+1)
j

to client, and it

would be the resulting logistic regression model.

Compute v(t+1) = (1−γt) ·w(t+1) +γt ·w(t): For w
(t+1)
j , we first compute

(1−γt) ·w(t+1)
j and γt ·w(t)

j using MultP and Add. The resulting two ciphertexts
agree in modulus and packing shape, and can be added into ctxt

v
(t+1)
j

in modulus

q/∆. As our goal is to have ctxt
v
(t+1)
j

in modulus q, the server call PBoot to raise

ctxt
v
(t+1)
j

to modulus q.

Remark As the server and client only observes additive share or HE cipher-
text of messages, each party cannot learn anything from protocol execution, as
addressed in Section 4.

6.2 Matrix-Vector Mult Optimization

A naive implementation of matrix-vector multiplication procedure (Step 1) and
3)) requires total m′ · n′ numbers of Mult, but we apply a small trick to reduce
computational cost. For that, we introduce little bit details of Mult algorithm.
The Mult algorithm can be split into three sub-algorithms as following:

– Tensor(ctxt1, ctxt2): perform a sort of tensor product of two ciphertexts,
and output another form of ciphertext ctxtts in R3

q (rather than the original
ciphertext in R2

q).
– ReLin(evk, ctxtts): Using evk, convert a ciphertext from R3

q to R2
q and output

ctxtrl ∈ R2
q.

– ReScale(ctxtrl): The resulting ciphertext ctxtrl of previous two procedures
will retain scaling factor ∆2, rather than ∆. This procedure turns back the
scaling factor to ∆. This roughly done by dividing the ciphertext by ∆, and
this is the reason that modulus space reduced to q/∆.

24 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

Algorithm 5 Logistic Regression Training

Server Client

Initialize .

Ciphertexts ctxtZi,j for 0 ≤ i < n′ and
0 ≤ j < m′

Ciphertexts ctxt
v
(t)
j

for 0 ≤ j < m′

Ciphertexts ctxt
w

(t)
j

for 0 ≤ j < m′

Learning rate αt
Moving average smoothing parameter γt

Phase 1: Compute x = ZI · v(t) .

for i = 0 to n′ − 1 do
ctxtxi ← Mult(evk, ctxtZi,0 , ctxtv0)
for j = 1 to m′ − 1 do

ctxt′ ← Mult(evk, ctxtZi,j , ctxtvj)
ctxtxi ← Add (ctxtxi , ctxt

′)
end for

end for

Phase 2: Compute y = −αt
n
· σ(x) .

K1 = {0,m, 2m, · · · , n ·m}
for i = 0 to n′ − 1 do

xi,0 ← HE2MPC(ctxtxi ,K1)
yi,0 ← Eval(−αt

n
· σapp,xi,0)

ctxtyi ← MPC2HE(yi,0)

xi,1 ← HE2MPC

yi,1 ← Eval(−αt
n
· σapp,xi,1)

MPC2HE(yi,1, 2)
end for

Phase 3: Compute g = ZTI · y .

for j = 0 to m′ − 1 do
ctxtgj ← Mult(evk, ctxtZ0,j , ctxtyj)
for i = 1 to n′ − 1 do

ctxt′ ← Mult(evk, ctxtZi,j , ctxtyj)
ctxtgj ← Add

(
ctxtgj , ctxt

′)
end for

end for

Phase 4-1: Compute w(t+1) = v(t) + g .

K2 = {0, 1, 2, · · · ,m}
for j = 0 to m′ − 1 do

ctxtgj ← PBoot(ctxtgj ,K2) PBoot(1)
ctxt

w
(t+1)
j

← Add(ctxtgj , ctxtv(t)
j

)

end for

Phase 4-2: Compute v(t+1) = (1− γt) ·w(t+1) + γt ·w(t) .

K3 = {0, N−m,N−2m, · · · , N− (n−1) ·
m}
for j = 0 to m′ − 1 do

ctxt
v
(t+1)
j

← MultP(ctxt
w

(t+1)
j

, 1− γt)
ctxt′ ← MultP(ctxt

w
(t)
j

, γt)

ctxt
v
(t+1)
j

← Add(ctxt
v
(t+1)
j

, ctxt′)

ctxt
v
(t+1)
j

← PBoot(ctxt
v
(t+1)
j

,K3) PBoot(1)
end for

Efficient Privacy Preserving Logistic Regression Inference and Training 25

Informally, actual multiplication of message is done by Tensor and the other
two procedures are for turning back the ciphertext into the original shape. In
particular, ReLin is the most complicated and expensive procedure among these
three procedures. The main point of our optimization is that the output cipher-
text of Tensor also supports addition between such ciphertexts, and we can
postpone the expensive Relin procedure after several Tensor and Add.

In our case that computes xi =
∑

0≤j<m′ Zi,j ·wj , for each j, we first compute
Tensor(ctxtZi,j

, ctxtwj
) which outputs length 3 ciphertexts. Then we accumulate

m′ numbers of length 3 ciphertexts into one length 3 ciphertext, say ctxt
(3)
xi . Then

we have to perform only one ReLin and ReScale to have a ciphertext of xi. This
reduces the total cost of x = ZI ·w from m′ ·n′ times of Mult to m′ ·n′ times of
Tensor and n′ times of ReLin and ReScale. Similarly, the total cost of g = ZTI ·y
now requires m′ · n′ times of Tensor and m′ times of ReLin and ReScale.

6.3 Cost Estimation

The total protocol consists of 2m′ ·n′ times of Tensor, and m′+n′ times of Relin
and ReScale, and n′ times of HE2MPC and MPC2HE protocols, and 2m′ times of
PBoot protocols, and MI · NI times of sigmoid evaluations on additive shares.
Recall that, for a mini-batch matrix of size NI×MI , we define n′ := dNI/ne and
m′ := dMI/me. Then the total cost depends on our choice of m and n, under
the constraint m · n = N where N is the slot size.

One can easily see that sigmoid evaluation part is independent to the choice
of m′ and n′. For simplicity we assume that NI and MI are power-of-two, which
implies n′ = NI/n and m′ = MI/m are also powers-of-two. Then m′ · n′ would
be invariant from the choice of m′ and n′. Therefore, by denoting Relin and
ReScale time cost Tre, HE2MPC and MPC2HE time cost Tconv, and PBoot time
cost Tboot, the homomorphic operation cost depends on (n′ +m′) · Tre, and the
communication cost depends on n′ · Tconv + 2m′ · Tboot. As the communication
cost is much larger than homomorphic operation cost, we choose m and n so
that the communication cost is minimized.

7 Experiment Result

Parameter Choices. For HE parameter, we use quotient ring degree N = 8192
and the ciphertext modulus q ≈ 260, which satisfies at least 128 bit-security, ac-
cording to homomorphic encryption standardization [26]. Real number messages
are encrypted with a scaling factor ∆ ≈ 225. Note that our ciphertext modulus
q ≈ 260 is sufficient, since our protocols requires only one ciphertext multiplica-
tion. We also remark that we use another MPC modulus t ≈ 255 so that it is
compatible with the previous work [21].

Network & Server Settings. Our experiments are performed in two different
WAN network environment to reflect the real-world use case more closely (one
within the country and the other across the countries; between Korea and United

26 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

States). We note that the bandwidth of WAN1 within one country is about
1.97 Gbits/sec and the bandwidth of WAN2 between two countries is about 116
Mbits/sec (this number is measured by iperf3 tool). Moreover, we use cloud
environments (Azure) where each computing processor is composed of a Intel
Xeon Processor with 8 vCPU’s and 32GiB of RAM.

Data Set. The data set used is the KDD CUP 1999 data [27] which is a publicly
available data set for a data mining competition. It contains 494,020 samples
with 26 features of real numbers and 15 nominal features, and its label indicates
whether the sample pertains to a normal situation or a network intrusion case.
Among them we omit 15 nominal features and use remaining 26 real-number
features.

Encrypted Inference. To test our encrypted inference, we first obtain a logis-
tic regression model for our data set using scikit-learn, which shows 0.9882
AUROC. We prepare one side of communication (the server) has a logistic re-
gression model in plain, and then let the other side (clients) generates inference
queries with encrypted client’s data. The client-side time is measured on whole

Client-side
Time (ms)

Server-side
Time (ms)

AUROC

WAN1 39.7 22.8 0.9882

WAN2 64.1 26.6 0.9882

Table 2: Inference experiment results at two WAN settings

procedure; from data encryption to final decryption, and the server-side time
corresponds to the only encrypted inference time. Table 2 shows the average
time for each side and AUROC, and note that they shows the exactly same
accuracy with plain. The detailed experiment settings can be found in following
paragraph.

Experiment Settings. To examine efficiency of an encrypted inference computa-
tion we modeled the testing scheme where a server processes different clients’
requests concurrently. Total of 197609 inference requests are queried from 10 dif-
ferent clients to one server handling incoming requests asynchronously, and time
taken to process a request is measured in both client and server. Such a scheme
is written as Python application, utilizing event-driven networking engine called
Twisted [28].

Encrypted Training. For our experiment, we prepare in one server the en-
crypted training data Z in several ciphertexts, and let the other server having
decryption key communicates with it and finally obtain the trained model. We

Efficient Privacy Preserving Logistic Regression Inference and Training 27

Batch
Size

Bytes
Transferred(KB)

Execution
Time(Sec)

Phase 1
(Sec)

Phase 2
(Sec)

Phase 3
(Sec)

Phase 4
(Sec)

AUROC

WAN1 1024 41672.445 177.523 1.928 69.698 1.233 25.966 0.997

WAN2 1024 41672.445 1278.128 1.985 835.972 1.212 359.707 0.997

WAN1 2048 41527.125 137.516 1.581 54.278 0.784 13.185 0.996

WAN2 2048 41527.125 742.766 1.594 485.269 0.775 189.694 0.996

WAN1 4096 23067.563 121.766 0.825 43.516 0.750 10.633 0.996

WAN2 4096 23067.563 434.728 0.822 245.382 0.747 112.500 0.996

Table 3: Training experiment results for various network setting and batch sizes

iterates algorithm 5 with several batch size, until it runs the whole training data,
i.e., we run one epoch of logistic regression training. For each batch size, the en-
cryption submatrix size m and n are optimally chosen according to Section 6.3.
The results can be found in Table 3.

As in Table 3, the larger batch size reduces iteration number, so it is nature
to reduce the total running time. The best result in WAN1 setting shows that our
training algorithm can be done in 2 minutes with 42 MB data transfer. And, the
best result in WAN2 setting shows that our training algorithm can be done in 7
minutes with 23 MB data transfer.

8 Conclusion

In this work, we shows that logistic regression for distributed training data is
practical by using homomorphic encryption and multi-party computation to-
gether. To make our solutions more practical, we use coefficient encoding and
extraction methods. We also implement our method with large scale data set,
and our logistic regression training takes 2 minutes and 7 minutes for two WAN
setting respectively.

As the key components of logistic regression are matrix-vector multiplication
and sigmoid evaluation, our solution can be extended to more advanced machine
learning models such as deep neural network and convolutional neural network
(CNN) as future work. As federated learning algorithm is highly depends on how
the data is distributed, so our method can be regarded as an efficient solution
for distributed data which does not depends on how the data is distributed.

References

1. P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
2017, pp. 19–38.

2. D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for efficient mixed-
protocol secure two-party computation.” in NDSS, 2015.

28 Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son

3. P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine learn-
ing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, 2018, pp. 35–52.

4. H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “Astra: High throughput
3pc over rings with application to secure prediction,” in Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Security Workshop, 2019, pp. 81–
92.

5. A. Patra and A. Suresh, “Blaze: Blazing fast privacy-preserving machine learning,”
arXiv preprint arXiv:2005.09042, 2020.

6. Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang, “Scalable and secure logistic
regression via homomorphic encryption,” in Proceedings of the Sixth ACM Confer-
ence on Data and Application Security and Privacy, 2016, pp. 142–144.

7. Y. Aono, T. Hayashi, L. T. Phong, and L. Wang, “Privacy-preserving logistic
regression with distributed data sources via homomorphic encryption,” IEICE
TRANSACTIONS on Information and Systems, vol. 99, no. 8, pp. 2079–2089,
2016.

8. C. Bonte and F. Vercauteren, “Privacy-preserving logistic regression training,”
BMC medical genomics, vol. 11, no. 4, p. 86, 2018.

9. H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and K. Lauter,
“Logistic regression over encrypted data from fully homomorphic encryption,”
BMC medical genomics, vol. 11, no. 4, p. 81, 2018.

10. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression model
training based on the approximate homomorphic encryption,” BMC medical ge-
nomics, vol. 11, no. 4, p. 83, 2018.

11. J. L. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup, “Doing real work
with fhe: the case of logistic regression,” in Proceedings of the 6th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, 2018, pp. 1–12.

12. S. Carpov, N. Gama, M. Georgieva, and J. R. Troncoso-Pastoriza, “Privacy-
preserving semi-parallel logistic regression training with fully homomorphic en-
cryption,” BMC Medical Genomics, vol. 13, no. 7, pp. 1–10, 2020.

13. J. H. Cheon, D. Kim, Y. Kim, and Y. Song, “Ensemble method for privacy-
preserving logistic regression based on homomorphic encryption,” IEEE Access,
vol. 6, pp. 46 938–46 948, 2018.

14. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic regression based
on homomorphic encryption: Design and evaluation,” JMIR medical informatics,
vol. 6, no. 2, p. e19, 2018.

15. J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption.”
IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

16. J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arith-
metic of approximate numbers,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2017, pp. 409–437.

17. C. Boura, N. Gama, and M. Georgieva, “Chimera: a unified framework for b/fv,
tfhe and heaan fully homomorphic encryption and predictions for deep learning.”
IACR Cryptol. ePrint Arch., vol. 2018, p. 758, 2018.

18. C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “Chimera: Combining ring-
lwe-based fully homomorphic encryption schemes,” Journal of Mathematical Cryp-
tology, vol. 14, no. 1, pp. 316–338, 2020.

19. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast fully homo-
morphic encryption over the torus,” Journal of Cryptology, vol. 33, no. 1, pp. 34–91,
2020.

Efficient Privacy Preserving Logistic Regression Inference and Training 29

20. C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low la-
tency framework for secure neural network inference,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1651–1669.

21. D. Rathee, T. Schneider, and K. Shukla, “Improved multiplication triple generation
over rings via rlwe-based ahe,” in International Conference on Cryptology and
Network Security. Springer, 2019, pp. 347–359.

22. W. jie Lu and J. Sakuma, “Faster multiplication triplet generation from homomor-
phic encryption for practical privacy-preserving machine learning under a narrow
bandwidth,” Cryptology ePrint Archive, Report 2018/139, Tech. Rep., 2018.

23. P. Pullonen, “Actively secure two-party computation: Efficient beaver triple gen-
eration,” Instructor, 2013.

24. M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba, “New pack-
ing method in somewhat homomorphic encryption and its applications,” Security
and Communication Networks, vol. 8, no. 13, pp. 2194–2213, 2015.

25. W. T. Vetterling and W. H. Press, Numerical recipes in Fortran: the art of scientific
computing. Cambridge University Press, 1992, vol. 1.

26. M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi,
J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison,
A. Sahai, and V. Vaikuntanathan, “Homomorphic encryption security standard,”
HomomorphicEncryption.org, Toronto, Canada, Tech. Rep., November 2018.

27. “KDD Cup 1999 Data,” http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html, information and Computer Science, University of California, Irvine, CA.

28. “Twisted 20.3.0,” https://twistedmatrix.com/trac/.

