204 research outputs found

    IL-21 promotes the expansion of CD27+CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells

    Get PDF
    Contains fulltext : 118572.pdf (publisher's version ) (Open Access)BACKGROUND: Adoptive cell transfer of tumor infiltrating lymphocytes has shown clinical efficacy in the treatment of melanoma and is now also being explored in other tumor types. Generation of sufficient numbers of effector T cells requires extensive ex vivo expansion, often at the cost of T cell differentiation and potency. For the past 20 years, IL-2 has been the key cytokine applied in the expansion of TIL for ACT. However, the use of IL-2 has also led to collateral expansion of regulatory T cells (Tregs) and progressive T cell differentiation, factors known to limit in vivo persistence and activity of transferred TIL. The use of alternative T cell growth factors is therefore warranted. Here, we have compared the effects of IL-2, -15 and -21 cytokines on the expansion and activation of TIL from single-cell suspensions of non-small cell lung cancer, ovarian cancer and melanoma. METHODS: We applied the K562-based artificial APC (aAPC) platform for the direct and rapid expansion of tumor infiltrating lymphocytes isolated from primary cancer specimens. These aAPC were engineered to express the Fc-gamma receptor CD32 (for anti-CD3 antibody binding), the co-stimulatory molecule 4-1BBL, and to secrete either IL-2, IL-15 or IL-21 cytokine. RESULTS: Although IL-2 aAPC induced the greatest overall TIL expansion, IL-21 aAPC induced superior expansion of CD8+ T cells with a CD27+CD28+ "young" phenotype and superior functional cytotoxic effector characteristics, without collateral expansion of Tregs. CONCLUSION: Our data rationalize the clinical application of IL-21-secreting aAPC as a standardized cell-based platform in the expansion of "young" effector TIL for ACT

    Breast adipocyte size associates with ipsilateral invasive breast cancer risk after ductal carcinoma in situ

    Get PDF
    Although Ductal Carcinoma In Situ (DCIS) is a non-obligate precursor to ipsilateral invasive breast cancer (iIBC), most DCIS lesions remain indolent. Hence, overdiagnosis and overtreatment of DCIS is a major concern. There is an urgent need for prognostic markers that can distinguish harmless from potentially hazardous DCIS. We hypothesized that features of the breast adipose tissue may be associated with risk of subsequent iIBC. We performed a case-control study nested in a population-based DCIS cohort, consisting of 2,658 women diagnosed with primary DCIS between 1989-2005, uniformly treated with breast conserving surgery (BCS) alone. We assessed breast adipose features with digital pathology (HALO®, Indica Labs) and related these to iIBC risk in 108 women that developed subsequent iIBC (cases) and 168 women who did not (controls) by conditional logistic regression, accounting for clinicopathological and immunohistochemistry variables. Large breast adipocyte size was significantly associated with iIBC risk (Odds Ratio (OR) 2.75, 95% confidence interval (95%CI)= 1.25 to 6.05). High Cyclooxygenase (COX)-2 protein expression in the DCIS cells was also associated with subsequent iIBC (OR 3.70 (95%CI= 1.59 to 8.64). DCIS with both high COX-2 expression and large breast adipocytes was associated with a 12-fold higher risk (OR 12.0, 95%CI= 3.10 to 46.3, P</p

    Foundation species enhance food web complexity through non-trophic facilitation

    Get PDF
    Food webs are an integral part of every ecosystem on the planet, yet understanding the mechanisms shaping these complex networks remains a major challenge. Recently, several studies suggested that non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structure. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups. Here, we combine analyses of 58 food webs from seven terrestrial, freshwater and coastal systems to test (1) the general hypothesis that non-trophic facilitation by habitat-forming foundation species enhances food web complexity, and (2) whether these enhancements have either random or targeted effects on particular trophic levels, functional groups, and linkages throughout the food web. Our empirical results demonstrate that foundation species consistently enhance food web complexity in all seven ecosystems. Further analyses reveal that 15 out of 19 food web properties can be well-approximated by assuming that foundation species randomly facilitate species throughout the trophic network. However, basal species are less strongly, and carnivores are more strongly facilitated in foundation species’ food webs than predicted based on random facilitation, resulting in a higher mean trophic level and a longer average chain length. Overall, we conclude that foundation species strongly enhance food web complexity through non-trophic facilitation of species across the entire trophic network. We therefore suggest that the structure and stability of food webs often depends critically on non-trophic facilitation by foundation species.</p

    High susceptibility of c-KIT+CD34+ precursors to prolonged doxorubicin exposure interferes with Langerhans cell differentiation in a human cell line model

    Get PDF
    As neoadjuvant and adjuvant chemotherapy schedules often consist of multiple treatment cycles over relatively long periods of time, it is important to know what effects protracted drug administration can have on the immune system. Here, we studied the long-term effects of doxorubicin on the capacity of dendritic cell (DC) precursors to differentiate into a particular DC subset, the Langerhans cells (LC). In order to achieve high telomerase activity as detected in hematological stem cells, precursor cells from the acute-myeloid leukemia (AML)-derived cell line MUTZ3 were stably transduced with human telomerase reverse transcriptase (hTERT) to facilitate their growth potential, while preventing growth, and drug-induced senescence, and preserving their unique capacity for cytokine-dependent DC and LC differentiation. The hTERT-MUTZ3 cells were selected with increasing concentrations of the anthracyclin doxorubicin. After 1–2 months of selection with 30–90 nM doxorubicin, the cells completely lost their capacity to differentiate into LC. This inhibition turned out to be reversible, as the cells slowly regained their capacity to differentiate after a 3- to 4-month drug-free period and with this became capable again of priming allogeneic T cells. Of note, the loss and gain of this capacity to differentiate coincided with the loss and gain of a subpopulation within the CD34+ proliferative compartment with surface expression of the stem cell factor receptor (SCF-R/CD117/c-Kit). These data are in favor of cytostatic drug-free intervals before applying autologous DC-based vaccination protocols, as specific DC precursors may need time to recover from protracted chemotherapy treatment and re-emerge among the circulating CD34+ hematopoietic stem and precursor cells

    A participatory action research approach to strengthening health managers’ capacity at district level in Eastern Uganda

    Get PDF
    BACKGROUND: Many approaches to improving health managers’ capacity in poor countries, particularly those pursued by external agencies, employ non-participatory approaches and often seek to circumvent (rather than strengthen) weak public management structures. This limits opportunities for strengthening local health managers’ capacity, improving resource utilisation and enhancing service delivery. This study explored the contribution of a participatory action research approach to strengthening health managers’ capacity in Eastern Uganda. METHODS: This was a qualitative study that used open-ended key informant interviews, combined with review of meeting minutes and observations to collect data. Both inductive and deductive thematic analysis was undertaken. The Competing Values Framework of organisational management functions guided the deductive process of analysis and the interpretation of the findings. The framework builds on four earlier models of management and regards them as complementary rather than conflicting, and identifies four managers’ capacities (collaborate, create, compete and control) by categorising them along two axes, one contrasting flexibility versus control and the other internal versus external organisational focus. RESULTS: The findings indicate that the participatory action research approach enhanced health managers’ capacity to collaborate with others, be creative, attain goals and review progress. The enablers included expanded interaction spaces, encouragement of flexibility, empowerment of local managers, and the promotion of reflection and accountability. Tension and conflict across different management functions was apparent; for example, while there was a need to collaborate, maintaining control over processes was also needed. These tensions meant that managers needed to learn to simultaneously draw upon and use different capacities as reflected by the Competing Values Framework in order to maximise their effectiveness. CONCLUSIONS: Improved health manager capacity is essential if sustained improvements in health outcomes in lowincome countries are to be attained. The expansion of interaction spaces, encouragement of flexibility, empowerment of local managers, and the promotion of reflection and accountability were the key means by which participatory action research strengthened health managers’ capacity. The participatory approach to implementation therefore created opportunities to strengthen health managers’ capacity

    Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma

    Get PDF
    Surgery for locoregionally advanced head and neck squamous cell carcinoma (HNSCC) results in 30‒50% five-year overall survival. In IMCISION (NCT03003637), a non-randomized phase Ib/IIa trial, 32 HNSCC patients are treated with 2 doses (in weeks 1 and 3) of immune checkpoint blockade (ICB) using nivolumab (NIVO MONO, n = 6, phase Ib arm A) or nivolumab plus a single dose of ipilimumab (COMBO, n = 26, 6 in phase Ib arm B, and 20 in phase IIa) prior to surgery. Primary endpoints are feasibility to resect no later than week 6 (phase Ib) and primary tumor pathological response (phase IIa). Surgery is not delayed or suspended for any patient in phase Ib, meeting the primary endpoint. Grade 3‒4 immune-related adverse events are seen in 2 of 6 (33%) NIVO MONO and 10 of 26 (38%) total COMBO patients. Pathological response, defined as the %-change in primary tumor viable tumor cell percentage from baseline biopsy to on-treatment resection, is evaluable in 17/20 phase IIa patients and 29/32 total trial patients (6/6 NIVO MONO, 23/26 COMBO). We observe a major pathological response (MPR, 90‒100% response) in 35% of patients after COMBO ICB, both in phase IIa (6/17) and in the whole trial (8/23), meeting the phase IIa primary endpoint threshold of 10%. NIVO MONO’s MPR rate is 17% (1/6). None of the MPR patients develop recurrent HSNCC during 24.0 months median postsurgical follow-up. FDG-PET-based total lesion glycolysis identifies MPR patients prior to surgery. A baseline AID/APOBEC-associated mutational profile and an on-treatment decrease in hypoxia RNA signature are observed in MPR patients. Our data indicate that neoadjuvant COMBO ICB is feasible and encouragingly efficacious in HNSCC

    Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer

    Get PDF
    The folate derivatives folic acid (FA) and folinic acid (FNA) decrease the in vivo and in vitro activities of antifolate drugs in Plasmodium falciparum. However, the effects of 5-methyl-tetrahydrofolate (5-Me-THF) and tetrahydrofolate (THF), the two dominant circulating folate forms in humans, have not been explored yet. We have investigated the effects of FA, FNA, 5-Me-THF, and THF on the in vitro activity of the antimalarial antifolates pyrimethamine and chlorcycloguanil and the anticancer antifolates methotrexate (MTX), aminopterin, and trimetrexate (TMX), against P. falciparum. The results indicate that these anticancers are potent against P. falciparum, with IC50 < 50 nM. 5-Me-THF does not significantly decrease the activity of all tested drugs, and none of the tested folate derivatives significantly decrease the activity of these anticancers. Thus, malaria folate metabolism has features different from those in human, and the exploitation of this difference could lead to the discovery of new drugs to treat malaria. For instance, the combination of 5-Me-THF with a low dose of TMX could be used to treat malaria. In addition, the safety of a low dose of MTX in the treatment of arthritis indicates that this drug could be used alone to treat malaria

    Potent interaction of flavopiridol with MRP1

    Get PDF
    The multidrug resistance protein 1 (MRP1) is an ATP-dependent transport protein for organic anions, as well as neutral or positively charged anticancer agents. In this study we show that flavopiridol, a synthetic flavonoid currently studied in phase 1 trials for its anti-proliferative characteristics, interacts with MRP1 in a potent way. Flavopiridol, as well as other (iso)flavonoids stimulate the ATPase activity of MRP1 in a dose-dependent way at low micromolar concentrations. A new specific monoclonal antibody against MRP1 (MIB6) inhibits the (iso)flavonoid-induced ATPase activity of plasma membrane vesicles prepared from the MRP1 overexpressing cell line GLC4/ADR. The accumulation of daunorubicin in GLC4/ADR cells is increased by flavopiridol and by other non-glycosylated (iso)flavonoids that interact with MRP1 ATPase activity. However, flavopiridol is the only tested compound that affects the daunorubicin accumulation when present at concentrations below 1 μM. Glycosylated (iso)flavonoids do not affect MRP1-mediated transport or ATPase activity. Finally, MRP1 overexpressing and transfected cells are resistant to flavopiridol, but not to other (iso)flavonoids tested. These findings may be of relevance for the development of anticancer therapies with flavopiridol. © 1999 Cancer Research Campaig

    Conditional Immortalization of Human B Cells by CD40 Ligation

    Get PDF
    It is generally assumed that human differentiated cells have a limited life-span and proliferation capacity in vivo, and that genetic modifications are a prerequisite for their immortalization in vitro. Here we readdress this issue, studying the long-term proliferation potential of human B cells. It was shown earlier that human B cells from peripheral blood of healthy donors can be efficiently induced to proliferate for up to ten weeks in vitro by stimulating their receptor CD40 in the presence of interleukin-4. When we applied the same stimuli under conditions of modified cell number and culture size, we were surprised to find that our treatment induced B cells to proliferate throughout an observation period of presently up to 1650 days, representing more than 370 population doublings, which suggested that these B cells were immortalized in vitro. Long-term CD40-stimulated B cell cultures could be established from most healthy adult human donors. These B cells had a constant phenotype, were free from Epstein-Barr virus, and remained dependent on CD40 ligation. They had constitutive telomerase activity and stabilized telomere length. Moreover, they were susceptible to activation by Toll-like receptor 9 ligands, and could be used to expand antigen-specific cytotoxic T cells in vitro. Our results indicate that human somatic cells can evade senescence and be conditionally immortalized by external stimulation only, without a requirement for genetic manipulation or oncoviral infection. Conditionally immortalized human B cells are a new tool for immunotherapy and studies of B cell oncogenesis, activation, and function
    corecore