6 research outputs found

    Oxygen depletion recorded in upper waters of the glacial Southern Ocean

    Get PDF
    Oxygen depletion in the upper ocean is commonly associated with poor ventilation and storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium ratios (I/Ca) in recent planktonic foraminifera suggest that values less than ~2.5 μmol mol−1 indicate the presence of O2-depleted water. Here we apply this proxy to estimate past dissolved oxygen concentrations in the near surface waters of the currently well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front (APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 μmol kg−1 during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the carbon engine of the Earth’s climate system. These new estimates of past ocean oxygenation variability may assist in resolving mechanisms responsible for the much-debated ice-age atmospheric CO2 decline

    Holocene climate variability in the Labrador Sea

    No full text
    Formation of Labrador Sea Water proper commenced about 7000 years ago during the Holocene interglacial. To test whether fresher surface water conditions may have inhibited Labrador Sea Water convection during the early Holocene we measured planktonic foraminiferal (Globigerina bulloides) oxygen isotopes (δ18O) and Mg/Ca ratios at Orphan Knoll (cores HU91-045-093 and MD95-2024, 3488 m) in the Labrador Sea to reconstruct shallow subsurface summer conditions (temperature and seawater δ18O). Lighter foraminiferal δ18O values are recorded during the early Holocene between 11000 and 7000 years ago. Part of these lighter foraminiferal δ18O values can be explained by increased calcification temperatures. Reconstructed seawater δ18O values were, however, still on average 0.5‰ lighter compared with those of recent times, confirming that fresher surface waters in the Labrador Sea were probably a limiting factor in Labrador Sea Water formation during the early Holocene

    I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation

    Get PDF
    The decline in dissolved oxygen in global oceans (ocean deoxygenation) is a potential consequence of global warming which may have important impacts on ocean biogeochemistry and marine ecosystems. Current climate models do not agree on the trajectory of future deoxygenation on different timescales, in part due to uncertainties in the complex, linked effects of changes in ocean circulation, productivity and organic matter respiration. More (semi-)quantitative reconstructions of oceanic oxygen levels over the Pleistocene glacial cycles may provide a critical test of our mechanistic understanding of the response of oceanic oxygenation to climate change. Even the most promising proxies for bottom water oxygen (BWO) have limitations, which calls for new proxy development and a multi-proxy compilation to evaluate glacial ocean oxygenation. We use Holocene benthic foraminifera to explore I/Ca in Cibicidoides spp. as a BWO proxy. We propose that low I/Ca (e.g., 15%) may provide semi-quantitative estimates of low BWO in past oceans (e.g., <∼50 μmol/kg). We present I/Ca records in five cores and a global compilation of multiproxy data, indicating that bottom waters were generally less-oxygenated during glacial periods, with low O2 waters (<∼50 μmol/kg) occupying some parts of the Atlantic and Pacific Oceans. Water mass ventilation and circulation may have been important in deoxygenation of the glacial deep Pacific and South Atlantic, whereas enhanced remineralization of organic matter may have had a greater impact on reducing the oxygen content of the interior Atlantic Ocean

    Quaternary climatic control of biogenic magnetite production and eolian dust input in cores from the Mediterranean Sea

    No full text
    We report high-resolution magnetic measurements from two Mediterranean piston cores: LC07 (Sicily Strait) and LC10 (Ionian Sea). Magnetostratigraphic results and 18O data provide age constraints for core LC07, where we investigate magnetic property variations for two age intervals (0–600 kyr and 660–1020 kyr). For core LC10, rock magnetic parameters appear to be climatically controlled and are used to derive an astronomically tuned age model for the interval between 780 and 1200 kyr. In core LC07, the dominant control on the magnetic properties appears to be glacial–interglacial variations in the concentration of biogenic magnetite. In addition, an increased contribution from high coercivity minerals (e.g. hematite and/or goethite) probably reflects an enhanced eolian input during glacial periods. Climatic control of magnetotactic bacterial populations has been previously suggested in other environments, but this is the first such report from the Mediterranean. In contrast, the rock magnetic response to Quaternary climatic variability in core LC10 seems to be better expressed by variations in the concentration of high coercivity magnetic minerals. The contrast between a dominantly detrital/eolian flux and a dominantly biogenic flux at the same time for the two Mediterranean settings might relate to the presence of an active current regime in the Sicily Strait, which might decrease delivery of an eolian component to the seafloor compared to the deep Ionian Sea

    Climate evolution through the onset and intensification of Northern Hemisphere glaciation

    No full text
    The Pliocene Epoch (∼5.3–2.6 million years ago, Ma) was characterized by a warmer than present climate with smaller Northern Hemisphere ice sheets, and offers an example of a climate system in long-term equilibrium with current or predicted near-future atmospheric CO2 concentrations (pCO2). A long-term trend of ice-sheet expansion led to more pronounced glacial (cold) stages by the end of the Pliocene (∼2.6 Ma), known as the “intensification of Northern Hemisphere Glaciation” (iNHG). We assessed the spatial and temporal variability of ocean temperatures and ice-volume indicators through the late Pliocene and early Pleistocene (from 3.3 to 2.4 Ma) to determine the character of this climate transition. We identified asynchronous shifts in long-term means and the pacing and amplitude of shorter-term climate variability, between regions and between climate proxies. Early changes in Antarctic glaciation and Southern Hemisphere ocean properties occurred even during the mid-Piacenzian warm period (∼3.264–3.025 Ma) which has been used as an analog for future warming. Increased climate variability subsequently developed alongside signatures of larger Northern Hemisphere ice sheets (iNHG). Yet, some regions of the ocean felt no impact of iNHG, particularly in lower latitudes. Our analysis has demonstrated the complex, non-uniform and globally asynchronous nature of climate changes associated with the iNHG. Shifting ocean gateways and ocean circulation changes may have pre-conditioned the later evolution of ice sheets with falling atmospheric pCO2. Further development of high-resolution, multi-proxy reconstructions of climate is required so that the full potential of the rich and detailed geological records can be realized
    corecore