207 research outputs found

    Doing the Job: The 1964 Desgregation of the Florida Army National Guard

    Get PDF
    The American civil rights movement usually brings to mind cities such as Montgomery, Birmingham, Memphis and Washington, D.C. In Florida, however, one of the most significant events of the civil rights era occurred without fanfare in the small, west coast town of Palmetto. It was here in 1964 that the color barrier was broken in one of the state\u27s largest whites-only organizations, The Florida Army National Guard. For the first time in post-colonial history, African-Americans were enlisted into the state\u27s military. Prior to American control, African Americans did play a military role in Florida. State guard officials claim that the first black militia unit in North America was formed under Spanish rule in 1683. The company of free men of color was commanded by a free black, Francisco Menendez until at least 1742. Free black Floridians also served the British during the American War for Independence and Spain again during the Second Period of Spanish Occupation. Historian Robert Hawk notes that while black units enrolled in the state militia from 1865 to 1901, they received no state support and no encouragement to become active units.

    Occupational Transitions of Family Caregivers of Loved Ones with Dementia

    Get PDF
    Purpose: The primary purpose of this study was to explore how family caregivers of people with dementia experience transitions in occupations as they assume the caregiver role. Because unpaid family caregivers play a vital part in the scheme of health care, it is important to understand their supports, their perceptions of themselves as caregivers, and the impact of caregiving on relationships, identity, and physical and mental health. Many researchers have studied the effects of caregiver burden, yet minimal attention has been given to the lived experiences of caregiving on their daily roles and routines. Methods: A qualitative descriptive design was used to obtain data from eight caregivers through semi-structured interviews. Content analysis was then applied to all data. Results: The following categories were identified: 1) Benefits, which consisted of the positive experiences gained as a result of caregiving; 2) Consequences, which included the physical, mental, and emotional burdens attached to being a caregiver; and 3) Supports, which were positive resources utilized by caregivers to be both better prepared to care for their loved ones and more capable within their caregiving role. Conclusion: Findings confirm that unpaid caregivers of loved ones with dementia experience dramatic changes in many aspects of their lives. Caregivers felt a strong responsibility as a family member to provide care for their loved ones. It has been found that caregivers spend most of their time engaged in caregiver related tasks, consequently impacting their occupational balance and ability to engage in what they would like to do. Health care providers must be mindful of the changes that caregivers experience, by assisting them to increase supports, anticipate the consequences, and recognize and value the benefits

    Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus agalactiae </it>(Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes.</p> <p>Results</p> <p>It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates.</p> <p>Conclusion</p> <p>A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.</p

    Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    Full text link
    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber buttons between observing configurations within ~300 s and to an accuracy ~25 microns. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph operating at R~1000-2000. Another high dispersion bench spectrograph offering R~5,000, Hectochelle, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at \sim17%. Hectospec has proven to be a workhorse instrument at the MMT. Hectospec and Hectochelle together were scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned \~60,000 reduced spectra for 16 scientific programs during its first year of operation.Comment: 68 pages, 28 figures, to appear in December 2005 PAS

    The Utility of High-Resolution Melting Analysis of SNP Nucleated PCR Amplicons—An MLST Based Staphylococcus aureus Typing Scheme

    Get PDF
    High resolution melting (HRM) analysis is gaining prominence as a method for discriminating DNA sequence variants. Its advantage is that it is performed in a real-time PCR device, and the PCR amplification and HRM analysis are closed tube, and effectively single step. We have developed an HRM-based method for Staphylococcus aureus genotyping. Eight single nucleotide polymorphisms (SNPs) were derived from the S. aureus multi-locus sequence typing (MLST) database on the basis of maximized Simpson's Index of Diversity. Only G↔A, G↔T, C↔A, C↔T SNPs were considered for inclusion, to facilitate allele discrimination by HRM. In silico experiments revealed that DNA fragments incorporating the SNPs give much higher resolving power than randomly selected fragments. It was shown that the predicted optimum fragment size for HRM analysis was 200 bp, and that other SNPs within the fragments contribute to the resolving power. Six DNA fragments ranging from 83 bp to 219 bp, incorporating the resolution optimized SNPs were designed. HRM analysis of these fragments using 94 diverse S. aureus isolates of known sequence type or clonal complex (CC) revealed that sequence variants are resolved largely in accordance with G+C content. A combination of experimental results and in silico prediction indicates that HRM analysis resolves S. aureus into 268 “melt types” (MelTs), and provides a Simpson's Index of Diversity of 0.978 with respect to MLST. There is a high concordance between HRM analysis and the MLST defined CCs. We have generated a Microsoft Excel key which facilitates data interpretation and translation between MelT and MLST data. The potential of this approach for genotyping other bacterial pathogens was investigated using a computerized approach to estimate the densities of SNPs with unlinked allelic states. The MLST databases for all species tested contained abundant unlinked SNPs, thus suggesting that high resolving power is not dependent upon large numbers of SNPs

    Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    Get PDF
    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 310-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 310-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands
    corecore