137 research outputs found

    Modelling and automated calibration of a general multi-projective camera

    Get PDF
    Recently, multi-projective cameras (MPCs), often based on frame-mounted multiple cameras with a small baseline and arbitrary overlap, have found a remarkable place in geomatics and vision-based applications. This paper outlines the geometric calibration of a general MPC by presenting a mathematical model that describes its unknown generic geometry. A modified bundle block adjustment is employed to calibrate an industrial-level 360° non-metric camera. The structure of any MPC can be retrieved as a calibration set of relative and interior orientation parameters (as well as the pose of the MPC shots) using a calibration room which has been accurately determined by close range photogrammetry. To demonstrate the efficiency and precision of the model, a Panono camera (an MPC with 36 individual cameras) was calibrated. After the adjustment, sub-pixel image residuals and acceptable object-space errors were observed.Peer reviewe

    An Image-Based Real-Time Georeferencing Scheme for a UAV Based on a New Angular Parametrization

    Get PDF
    Simultaneous localization and mapping (SLAM) of a monocular projective camera installed on an unmanned aerial vehicle (UAV) is a challenging task in photogrammetry, computer vision, and robotics. This paper presents a novel real-time monocular SLAM solution for UAV applications. It is based on two steps: consecutive construction of the UAV path, and adjacent strip connection. Consecutive construction rapidly estimates the UAV path by sequentially connecting incoming images to a network of connected images. A multilevel pyramid matching is proposed for this step that contains a sub-window matching using high-resolution images. The sub-window matching increases the frequency of tie points by propagating locations of matched sub-windows that leads to a list of high-frequency tie points while keeping the execution time relatively low. A sparse bundle block adjustment (BBA) is employed to optimize the initial path by considering nuisance parameters. System calibration parameters with respect to global navigation satellite system (GNSS) and inertial navigation system (INS) are optionally considered in the BBA model for direct georeferencing. Ground control points and checkpoints are optionally included in the model for georeferencing and quality control. Adjacent strip connection is enabled by an overlap analysis to further improve connectivity of local networks. A novel angular parametrization based on spherical rotation coordinate system is presented to address the gimbal lock singularity of BBA. Our results suggest that the proposed scheme is a precise real-time monocular SLAM solution for a UAV.Peer reviewe

    Tuuli- ja lumituhojen kartoitus ja mallinnus useampiaikaisten kaukokartoituspintamallien avulla

    Get PDF
    Tieteen tori: Luonnonvarariskien hallint

    Using a Semi-autonomous Drone Swarm to Support Wildfire Management – A Concept of Operations Development Study

    Get PDF
    This paper provides insights into a human factors-oriented Concept of Operations (ConOps), which can be applied for future semi-autonomous drone swarms to support the management of wildfires. The results provide, firstly, an overview of the current practices to manage wildfires in Finland. Secondly, some of the current challenges and future visions about drone usage in a wildfire situation are presented. Third, a description of the key elements of the developed future ConOps for operating a drone swarm to support the combat of wildfires is given. The ConOps has been formulated based on qualitative research, which included a literature review, seven subject matter expert interviews and a workshop with 40 professionals in the domain. Many elements of this ConOps may also be applied to a variety of other swarm robotics operations than only wildfire management. Finally, as the development of the ConOps is still in its first stage, several further avenues for research and development are proposed

    Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

    Get PDF
    Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records. To find the most efficient set of feature combination, we compare the performances of 3D-CNN models trained with hyperspectral (HS) channels, Red-Green-Blue (RGB) channels, and canopy height model (CHM), separately and combined. It is demonstrated that the proposed 3D-CNN model with RGB and HS layers produces the highest classification accuracy. The producer accuracy of the best 3D-CNN classifier on the test dataset were 99.6%, 94.8%, and 97.4% for pines, spruces, and birches, respectively. The best 3D-CNN classifier produced ~5% better classification accuracy than the MLP with all layers. Our results suggest that the proposed method provides excellent classification results with acceptable performance metrics for HS datasets. Our results show that pine class was detectable in most layers. Spruce was most detectable in RGB data, while birch was most detectable in the HS layers. Furthermore, the RGB datasets provide acceptable results for many low-accuracy applications.Peer reviewe
    • …
    corecore