16 research outputs found

    Small RNA AvrA Regulates IscR to Increase the Stress Tolerances in SmpB Deficiency of Aeromonas veronii

    Get PDF
    The superbacteria Aeromonas veronii displays not only a strong pathogenicity but also the resistance to nine kinds of antibiotics, resulting in the economic losses and health hazards. Small Protein B (SmpB) plays an important role in protein quality control, virulence, and stress reactions. Transcriptomic data revealed that expressions of the type IV pilus assembly and type VI secretion system (T6SS) proteins were downregulated in SmpB deficiency, indicating that the virulence of A. veronii might be attenuated. Although SmpB deletion decreased colonization in the mouse spleen and liver, LD50 of the smpB mutant was not altered as expected, compared with the wild type. Further, the transcriptomic and quantitative RT-PCR analyses showed that the combination of the downregulated AvrA and the upregulated iron-sulfur protein activator IscR, mediated the oxidative tolerance in smpB deletion. Next a reporter plasmid was constructed in which the promoter of iscR was applied to control the expression of the enhanced green fluorescent protein (eGFP) gene. When the reporter plasmid was co-expressed with the AvrA expression into E. coli, the relative fluorescence intensity was decreased significantly, suggesting that AvrA bound to iscR mRNA by base pairing, which in turn relieved the inhibition of iscR and intensified the downstream iron-sulfur proteins. Collectively, the smpB mutant exhibited an attenuated virulence in mice and enhanced tolerances to oxidative stress. This study demonstrates the complexity of gene regulation networks mediated by sRNA in systems biology, and also reflects the strong adaptability of superbacteria A. veronii in the process of evolution

    Antifungal activity of an artificial peptide aptamer SNP-D4 against Fusarium oxysporum

    No full text
    Fusarium oxysporum f. sp. cubense (FOC4) is a pathogen of banana fusarium wilt, which is a serious problem that has plagued the tropical banana industry for many years. The pathogenic mechanism is complex and unclear, so the prevention and control in agricultural production applications is ineffective. SNP-D4, an artificial peptide aptamer, was identified and specifically inhibited FOC4. To evaluate the efficacy of SNP-D4, FoC4 spores were treated with purified SNP-D4 to calculate the germination and fungicide rates. Damage of FOC4 spores was observed by staining with propidium iodide (PI). Eight proteins of FOC4 were identified to have high affinity for SNP-D4 by a pull-down method combined with Q-Exactive mass spectrometry. Of these eight proteins, A0A5C6SPC6, the aldehyde dehydrogenase of FOC4, was selected as an example to scrutinize the interaction sites with SNP-D4. Molecular docking revealed that Thr66 on the peptide loop of SNP-D4 bound with Tyr437 near the catalytic center of A0A5C6SPC6. Subsequently 42 spore proteins which exhibited associations with the eight proteins were retrieved for protein-protein interaction analysis, demonstrating that SNP-D4 interfered with pathways including ‘translation’, ‘folding, sorting and degradation’, ‘transcription’, ‘signal transduction’ and ‘cell growth and death’, eventually causing the inhibition of growth of FOC4. This study not only investigated the possible pathogenic mechanism of FOC4, but also provided a potential antifungal agent SNP-D4 for use in the control of banana wilt disease

    Genetic Selection of Peptide Aptamers That Interact and Inhibit Both Small Protein B and Alternative Ribosome-Rescue Factor A of Aeromonas veronii C4

    Get PDF
    Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA) in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides) was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN) as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB) which acts as one of the key components in trans-translation, and alternative ribosome-rescue factor A (ArfA) were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H) employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl) and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR) when treating in 2.0% KCl. Thus,the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti-microbial drugs targeted to the ribosome rescued factors in A. veronii

    Defining the scope of extended NIPS in Western China: evidence from a large cohort of fetuses with normal ultrasound scans

    No full text
    Abstract Background Standard noninvasive prenatal screening(NIPS) is an accurate and reliable method to screen for common chromosome aneuploidies, such as trisomy 21, 18 and 13. Extended NIPS has been used in clinic for not only aneuploidies but also copy number variants(CNVs). Here we aim to define the range of chromosomal abnormalities that should be able to identify by NIPS in order to be an efficient extended screening test for chromosomal abnormalities. Methods A prospective study was conducted, involving pregnant women without fetal sonographic structural abnormalities who underwent amniocentesis. Prenatal samples were analyzed using copy number variation sequencing(CNV-seq) to identify fetal chromosomal abnormalities. Results Of 28,469 pregnancies included 1,022 (3.59%) were identified with clinically significant fetal chromosome abnormalities, including 587 aneuploidies (2.06%) and 435 (1.53%) pathogenic (P) / likely pathogenic (LP) CNVs. P/LP CNVs were found in all chromosomes, but the distribution was not uniform. Among them, P/LP CNVs in chromosomes 16, 22, and X exhibited the highest frequencies. In addition, P/LP CNVs were most common on distal ends of the chromosomes and in low copy repeat regions. Recurrent microdeletion/microduplication syndromes (MMS) accounted for 40.69% of total P/LP CNVs. The size of most P/LP CNVs (77.47%) was < 3 Mb. Conclusions In addition to aneuploidies, the scope of extended NIPS should include the currently known P/LP CNVs, especially the regions with recurrent MMS loci, distal ends of the chromosomes, and low copy repeat regions. To be effective detection should include CNVs of < 3 Mb. Meanwhile, sufficient preclinical validation is still needed to ensure the clinical effect of extended NIPS
    corecore