364 research outputs found

    Electric road vehicles - overview, concepts and research at Reutlingen university

    Get PDF
    The paper details the architecture of fully electrified vehicles as well as their new electronic systems. Examples of up-to-date electrical passenger cars are given. A very important question, that is the environmental foot-print of electrical vehicles compared to conventional ones, is examined. A research project is introduced where a fleet of two-wheeled vehicles is available for day-to-day use. Research on vehicles, software for fleet management and battery range prediction is described.В данной статье привeдены подробные сведения о принципе работы электрифицированных транспортных средств, а также описаны их новые электрические системы. Показан примеры уже существующих электрических пассажирских транспортных средств. Рассмотрено влияние электрифицированного транспорта на окружающую среду в сравнении с обычными видами транспорта. Приведен проект исследований, в рамках которого для ежедневного использования существует парк двух колесных электрифицированных транспортных средств. Описаны исследования, непосредственно связанные с электрифицированным транспортом, определением точного времени разряда батареи, а также программным обеспечением, позволяющим управлять парком таких транспортных средств.У статті наведено докладні відомості щодо принципів роботи електрифікованих транспортних засобів, а також описано їх нові електричні системи. Показано приклади вже існуючих електричних пасажирських транспортних засобів. Розглянуто вплив електрифікованого транспорту на навколишнє середовище у порівнянні із звичайними видами транспорту. На- ведено проект досліджень, у рамках якого існує парк двоколісних електрифікованих транспортних засобів для щоденного використання. Описано дослідження, безпосередньо пов'язані із електрифікованим транспортом, визначенням точного часу розряду батареї, а також програмним забезпеченням, що дозволяє керувати парком таких транспортних засобів

    The 7% Property Tax Cap: The Battle in Cook County

    Get PDF

    Douma

    Get PDF

    Novelty in three-finger toxin evolution

    Get PDF

    Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion-implantation

    Full text link
    We describe here the characteristics of two types of high-quality PbTe p-n-junctions, prepared in this work: (1) by thermal diffusion of In4Te3 gas (TDJ), and (2) by ion implantation (implanted junction, IJ) of In (In-IJ) and Zn (Zn-IJ). The results, as presented here, demonstrate the high quality of these PbTe diodes. Capacitance-voltage and current-voltage characteristics have been measured. The measurements were carried out over a temperature range from ~ 10 K to ~ 180 K. The latter was the highest temperature, where the diode still demonstrated rectifying properties. This maximum operating temperature is higher than any of the earlier reported results. The saturation current density, J0, in both diode types, was ~ 10^-5 A/cm2 at 80 K, while at 180 K J0 ~ 10^-1 A/cm2 in TDJ and ~ 1 A/cm2 in both ion-implanted junctions. At 80 K the reverse current started to increase markedly at a bias of ~ 400 mV for TDJ, and at ~550 mV for IJ. The ideality factor n was about 1.5-2 for both diode types at 80 K. The analysis of the C-V plots shows that the junctions in both diode types are linearly graded. The analysis of the C-V plots allows also determining the height of the junction barrier, the concentrations and the concentration gradient of the impurities, and the temperature dependence of the static dielectric constant. The zero-bias-resistance x area products (R0Ae) at 80 K are: 850 OHMcm2 for TDJ, 250 OHMcm2 for In-IJ, and ~ 80 OHMcm2 for Zn-IJ, while at 180 K R0Ae ~ 0.38 OHMcm2 for TDJ, and ~ 0.1 OHMcm2 for IJ. The estimated detectivity is: D* ~ 10^10 cmHz^(1/2)/W up to T=140 K, determined mainly by background radiation, while at T=180 K, D* decreases to 108-107 cmHz^(1/2)/W, and is determined by the Johnson noise

    Situation and Development of Ferroalloy Metallurgy in Russia

    Get PDF
    Ferroalloy production is an important branch of metallurgy having a great impact on its development since the treatment of liquid metals by ferroalloys remains one of the main methods to regulate the quality of steel, cast iron,and nonferrous alloys. Manganese is the most essential element to treat ferrous and non-ferrous metals. A need for manganese alloys in Russia averages to 600–650 metric tons per year, but only a half of the quantity is satisfied by the domestic production. In contrast to manganese alloys, Russia provides itself with chromium ferroalloys obtained with the use of foreign raw materials. Domestic ores are used in limited quantities. Taking into account the strategic importance of ferroalloy industry and the necessity to create and include manganese and chromium ore bases, as well as the other basic problems, the achievement of the goals has to be implemented by enterprises with the help of the State. The output of ferrosilicon and crystal silicon in the Russian Federation exceeds its consumption in the country due to raw material reserves (quartzite, quartz), high productive capacity, and consumer demands. Ferroalloy enterprises in Russia produce ferrovanadium, ferromolybdenum, ferroniobium, ferrotungsten, ferrotitanium, and ferronickel. A traditional challenge for ferroalloy enterprises in Russia is improving the competitiveness at the expense of reducing production costs, improving the production quality, and solving the issue of import substitution for certain types of ferroalloys. Keywords: ferroalloys, manganese, ferrochromium, productio

    Manganese Ferroalloys of Russia

    Get PDF
    Manganese is an important strategic metal. The main consumer of manganese is iron and steel industry. Due to its importance in steel manufacturing, manganese has the first position among ferroalloys. The world output of manganese ferroalloys is around 1% of the total steel output. After the USSR collapsed, Russia has been left without manganese ore reserves. At present, Russia uses an imported ore to smelt only high-carbon ferromanganese and iron-silicon-manganese alloy in limited quantity. Mineral reserves of manganese ores in Russia is quite large: manganese ore reserves averages 230,000 metric tons (around 2% of the world reserves) and estimated resources – more than one billion tons. The quality of the Russian ores is lower than the one from the other main producing countries. The average content of manganese in the Russian ores fluctuates from 9 to 23%. Domestic ores contain high quantity of harmful impurities, first of all phosphorus (0.2–0.8%). The mineral reserves of manganese ores in Russia is based on carbonate ores with a share of over 77%. A problem to advance the establishment of domestic manganese mining base is an extremely important issue from the perspective of economic security. A string of questions ought to be addressed concerning the concentration of lean manganese ores, development of effective technologies to smelt manganese ferroalloys from the concentrates obtained after the concentration and creation of improved techniques to dephosphorize manganese concentrates. While producing manganese ferroalloys from ore to finished alloy, about 50% of the manganese extracted from strata is wasted in the form of by-products such as concentration sludges, slags, residue of small fractions of raw materials and finished products, sludges of smelting processes and dusts. In case of the by-products processing and following usage, it would be possible not only to reduce consumption of raw materials but also to increase manufacturing effectiveness and to minimize environmental impact. Keywords: ferromanganese, dephosphorization, ore, reserve

    Teaching Medical Students Optimal Consulting Skills: The Challenge of Generating Better Referring Physicians.

    Get PDF
    Rationale and objectives We sought to incorporate a new teaching module into the traditional medical student radiology clerkship, to improve the necessary skills for future referring physicians. Materials and methods A new required and graded module was introduced in 2014 into the radiology clerkship in year three of medical school: the Mystery Case. Each student was provided a unique and undifferentiated case from a dedicated teaching file containing de-identified images and requisition data. Students were expected to complete three serial tasks over one week: 1) prepare a voice recognition-derived, structured radiological report utilizing appropriate and relevant vocabulary; 2) discuss pertinent additional clinical information; and 3) discuss appropriate follow-up imaging, in addition to information on how to best prepare patients for these potential patient exams (e.g., with or without contrast, bowel preparation, and length of study). Students were provided written examples and dedicated class instruction with interactive discussions covering specific cases and associated related cases through random pairing with radiology resident and attending mentors. At the close of the week, students gave brief oral presentations of their cases and submitted the tasks for a written evaluation. Upon completion of the clerkship, the students completed a Likert-type six-item survey to evaluate the perceived improvement in select skills. Results The survey was completed by 82% (54/66) of the enrolled students, with 85% finding the Mystery Case an effective use of time. Medical students perceived an improved awareness of the patient care process (77%), awareness of the medical imaging resources available (89%), ability to understand a radiology report (74%), and ability to advise patients (69%). Conclusion Introduction of the Mystery Case as a graded exercise in the medical school radiology clerkship was perceived by students as effective use of time, with an improvement in the skills essential for future referring physicians
    corecore