430 research outputs found

    Prediction of Commuter’s Daily Time Allocation

    Get PDF
    This paper presents a model system to predict the time allocation in commuters’ daily activity-travel pattern. The departure time and the arrival time are estimated with Ordered Probit model and Support Vector Regression is introduced for travel time and activity duration prediction. Applied in a real-world time allocation prediction experiment, the model system shows a satisfactory level of prediction accuracy. This study provides useful insights into commuters’ activity-travel time allocation decision by identifying the important influences, and the results are readily applied to a wide range of transportation practice, such as travel information system, by providing reliable forecast for variations in travel demand over time. By introducing the Support Vector Regression, it also makes a methodological contribution in enhancing prediction accuracy of travel time and activity duration prediction

    U(1) CS Theory vs SL(2) CS Formulation: Boundary Theory and Wilson Line

    Full text link
    We first derive the boundary theory from the U(1) Chern-Simons theory. We then introduce the Wilson line and discuss the effective action on an nn-sheet manifold from the back-reaction of the Wilson line. The reason is that the U(1) Chern-Simons theory can provide an exact effective action when introducing the Wilson line. This study cannot be done in the SL(2) Chern-Simons formulation of pure AdS3_3 Einstein gravity theory. It is known that the expectation value of the Wilson line in the pure AdS3_3 Einstein gravity is equivalent to entanglement entropy in the boundary theory up to classical gravity. We show that the boundary theory of the U(1) Chern-Simons theory deviates by a self-interaction term from the boundary theory of the AdS3_3 Einstein gravity theory. It provides a convenient path to the building of "minimum surface=entanglement entropy" in the SL(2) Chern-Simons formulation. We also discuss the Hayward term in the SL(2) Chern-Simons formulation to compare with the Wilson line approach. To reproduce the entanglement entropy for a single interval at the classical level, we introduce two wedges under a regularization scheme. We propose the quantum generalization by combining the bulk and Hayward terms. The quantum correction of the partition function vanishes. In the end, we exactly calculate the entanglement entropy for a single interval. The pure AdS3_3 Einstein gravity theory shows a shift of central charge by 26 at the one-loop level. The U(1) Chern-Simons theory does not have such a shift from the quantum effect, and the result is the same in the weak gravitational constant limit. The non-vanishing quantum correction shows the naive quantum generalization of the Hayward term is incorrect.Comment: 39 pages, 2 figure

    Paeonol Attenuated Inflammatory Response of Endothelial Cells via Stimulating Monocytes-Derived Exosomal MicroRNA-223

    Get PDF
    Introduction: Paeonol, an active compound isolated from the radix of Cortex Moutan, has been shown to have anti-atherosclerosis effects by regulating blood cells’ function and protecting vascular cells injury. Besides, emerging evidences has proven that exosomes might play a pivotal role in intercellular communication by transmiting proteins and microRNAs from cell to cell. However, the relationship between monocytes-derived exosomal microRNA-223 and vascular inflammation injury along with paeonol’ effects are still not clear.Objective: Our study aimed to explain whether paeonol’s protective effect on inflammatory response is related to the regulation of exosomal microRNA-223 in the VECs.Methods: ApoE−/− mice were fed with high fat diet to replicate the AS model. HE staining and immunohistochemistry was used to detect inflammatory response of aorta. The expression of IL-1ÎČ and IL-6 were detected by ELISA. Western blot was used to detect the expression of STAT3, pSTAT3, ICAM-1 and VCAM-1. qRT-PCR was used to detect miR-223 expression. Exosomes were extracted from THP-1 cells by differential centrifugation and observed by transmission electron microscope. Observation of exosomes uptake into HUVECs was realized by laser microscopy. miR-223 target gene was detected by double luciferase gene report test.Results:In vivo experiments confirmed that paeonol restricted atherosclerosis development and increased miR-223 expression, inhibited STAT3 pathway in ApoE−/− mice. In vitro, miR-223 showed robust presence in THP-1 cells and undetectable in HUVECs. And we had observed that miR-223 could be internalized from THP-1 cells into HUVECs taking exosomes as a carrier. Paeonol obviously increased miR-223 expression in co-cultured HUVECs and exosomes in concentration dependent manner, compared to LPS group. In addition, paeonol relieved inflammatory secretion, adhesion and STAT3 expression in HUVECs, which could be inverted after miR-223 inhibitor transfection into THP-1 cells.Conclusion: Paeonol could increase the expression of miR-223 in THP-1 derived exosomes and in HUVECs after uptake of exosomes, whereas decrease the expression of STAT3, p-STAT3 in HUVECs. Ultimately paeonol decreased the expression of IL-1ÎČ, IL-6, ICAM-1, VCAM-1 in HUVECs and alleviated adhesion of THP-1 cells to HUVECs

    Verification of solitary wave numerical simulation and case study on interaction between solitary wave and semi-submerged structures based on SPH model

    Get PDF
    Due to significant influence on the safety of marine structures, the interaction between extreme waves and structures is a crucial area of study in marine science. This paper focus on the verification of a solitary wave meshless SPH model and the application of the model on the interaction between solitary waves and semi-submersible structures. A solitary wave propagation model is established based on the SPH method combined with Rayleigh solitary wave theory, quintic kernel function, artificial viscosity, and Symplectic Method. The accuracy of the model is validated by comparing the calculated wave height with the theoretical value. The calculated results with relative particle spacing H0/d0 ≄ 20 are in good agreement with the analytical solution. The simulated solitary wave is also quite stable with a maximum L2 error 0.016. Therefore, the proposed SPH model can accurately simulate the propagation of the solitary waves. A case study on the interaction between solitary waves and semi-submersible platforms is conducted. The results show that the interaction between solitary waves and semi-submersible causes two double peaks with wave heights of 0.398 m and 0.410 m, respectively, induced by overtopping at the center of the platform. The wave transmission coefficient Kt is 0.880 due to that the solitary wave height reduces from 0.498 m to 0.438 m after the solitary wave propagates through the semi-submersible structure. In addition, the solitary wave induces significant vertical wave loads of the structure with a load amplitude of 0.688, while horizontal wave loads are relatively small with a load amplitude of 0.089. The solitary wave arrived the structure induces the upstream and downstream overtopping and forms a hydraulic jump leading to the complex flow field. The maximum velocity at the top and bottom of the structure is 2.2 m/s and 0.8 m/s respectively. Positive or negative vortex are formed at the bottom of the leading edge, top and downstream of the structure with the maximum intensity 28 s-1 and -40 s-1. In a word, the meshless SPH model can conveniently and accurately simulate the propagation of the solitary waves, and be applied to the investigation of the wave height, velocity, vorticity, wave load, and wave breaking of the interaction between solitary waves and structures in ocean engineering

    Moral perfectionism and moral values, virtues, and judgments: A preliminary investigation

    Get PDF
    Moral perfectionism has a long tradition in philosophical inquiry, but so far has been ignored in psychological research. This article presents a first psychological investigation of moral perfectionism exploring its relationships with moral values, virtues, and judgments. In three studies, 539 university students responded to items of the Frost Multidimensional Perfectionism Scale (Frost, Marten, Lahart, & Rosenblate, 1990) adapted to measure personal moral standards (PMS) and concern over moral mistakes (CMM) and completed measures of moral values, virtues, and forgiveness, gratitude, and wrong behavior judgments. When partial correlations were computed controlling for the overlap between PMS and CMM, PMS showed positive correlations with moral values, virtues, reciprocal helping, forgiveness, and condemnation of wrong behaviors. In contrast, CMM showed a positive correlation only with indebtedness and a negative correlation with self-reliance. The present findings, while preliminary, suggest that moral perfectionism is a personality characteristic that may help explain individual differences in moral values, virtues, and judgments

    Interfacial “Single‐Atom‐in‐Defects” Catalysts Accelerating Li + Desolvation Kinetics for Long‐Lifespan Lithium‐Metal Batteries

    Get PDF
    The lithium-metal anode is a promising candidate for realizing high-energy-density batteries owing to its high capacity and low potential. However, several rate-limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+^+, Li0^0 nucleation, and atom diffusion, cause heterogeneous spatial Li-ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy-rich Co1−xS_{1−xS} embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+^+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite-free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li-metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4_4 cathode, the full cell (10.7 mg cm−2^{−2}) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications
    • 

    corecore