133 research outputs found

    HST-MRF: Heterogeneous Swin Transformer with Multi-Receptive Field for Medical Image Segmentation

    Full text link
    The Transformer has been successfully used in medical image segmentation due to its excellent long-range modeling capabilities. However, patch segmentation is necessary when building a Transformer class model. This process may disrupt the tissue structure in medical images, resulting in the loss of relevant information. In this study, we proposed a Heterogeneous Swin Transformer with Multi-Receptive Field (HST-MRF) model based on U-shaped networks for medical image segmentation. The main purpose is to solve the problem of loss of structural information caused by patch segmentation using transformer by fusing patch information under different receptive fields. The heterogeneous Swin Transformer (HST) is the core module, which achieves the interaction of multi-receptive field patch information through heterogeneous attention and passes it to the next stage for progressive learning. We also designed a two-stage fusion module, multimodal bilinear pooling (MBP), to assist HST in further fusing multi-receptive field information and combining low-level and high-level semantic information for accurate localization of lesion regions. In addition, we developed adaptive patch embedding (APE) and soft channel attention (SCA) modules to retain more valuable information when acquiring patch embedding and filtering channel features, respectively, thereby improving model segmentation quality. We evaluated HST-MRF on multiple datasets for polyp and skin lesion segmentation tasks. Experimental results show that our proposed method outperforms state-of-the-art models and can achieve superior performance. Furthermore, we verified the effectiveness of each module and the benefits of multi-receptive field segmentation in reducing the loss of structural information through ablation experiments

    Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System

    Get PDF
    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.National Natural Science Foundation of China [81400311, 31440052, 91439110]SCI(E)[email protected]

    Hydrogen Sulfide Inhibits L-Type Calcium Currents Depending upon the Protein Sulfhydryl State in Rat Cardiomyocytes

    Get PDF
    Hydrogen sulfide (H2S) is a novel gasotransmitter that inhibits L-type calcium currents (I Ca, L). However, the underlying molecular mechanisms are unclear. In particular, the targeting site in the L-type calcium channel where H2S functions remains unknown. The study was designed to investigate if the sulfhydryl group could be the possible targeting site in the L-type calcium channel in rat cardiomyocytes. Cardiac function was measured in isolated perfused rat hearts. The L-type calcium currents were recorded by using a whole cell voltage clamp technique on the isolated cardiomyocytes. The L-type calcium channel containing free sulfhydryl groups in H9C2 cells were measured by using Western blot. The results showed that sodium hydrosulfide (NaHS, an H2S donor) produced a negative inotropic effect on cardiac function, which could be partly inhibited by the oxidant sulfhydryl modifier diamide (DM). H2S donor inhibited the peak amplitude of I Ca, L in a concentration-dependent manner. However, dithiothreitol (DTT), a reducing sulfhydryl modifier markedly reversed the H2S donor-induced inhibition of I Ca, L in cardiomyocytes. In contrast, in the presence of DM, H2S donor could not alter cardiac function and L type calcium currents. After the isolated rat heart or the cardiomyocytes were treated with DTT, NaHS could markedly alter cardiac function and L-type calcium currents in cardiomyocytes. Furthermore, NaHS could decrease the functional free sulfhydryl group in the L-type Ca2+ channel, which could be reversed by thiol reductant, either DTT or reduced glutathione. Therefore, our results suggest that H2S might inhibit L-type calcium currents depending on the sulfhydryl group in rat cardiomyocytes

    ESIA: An Efficient and Stable Identity Authentication for Internet of Vehicles

    Full text link
    Decentralized, tamper-proof blockchain is regarded as a solution to a challenging authentication issue in the Internet of Vehicles (IoVs). However, the consensus time and communication overhead of blockchain increase significantly as the number of vehicles connected to the blockchain. To address this issue, vehicular fog computing has been introduced to improve efficiency. However, existing studies ignore several key factors such as the number of vehicles in the fog computing system, which can impact the consensus communication overhead. Meanwhile, there is no comprehensive study on the stability of vehicular fog composition. The vehicle movement will lead to dynamic changes in fog. If the composition of vehicular fog is unstable, the blockchain formed by this fog computing system will be unstable, which can affect the consensus efficiency. With the above considerations, we propose an efficient and stable identity authentication (ESIA) empowered by hierarchical blockchain and fog computing. By grouping vehicles efficiently, ESIA has low communication complexity and achieves high stability. Moreover, to enhance the consensus security of the hierarchical blockchain, the consensus process is from the bottom layer to the up layer (bottom-up), which we call B2UHChain. Through theoretical analysis and simulation verification, our scheme achieves the design goals of high efficiency and stability while significantly improving the IoV scalability to the power of 1.5 (^1.5) under similar security to a single-layer blockchain. In addition, ESIA has less communication and computation overhead, lower latency, and higher throughput than other baseline authentication schemes

    Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    Get PDF
    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases

    Plasma Homocysteine Level in Children With Postural Tachycardia Syndrome

    Get PDF
    The study was designed to evaluate the changes of plasma homocysteine (Hcy) level in children with postural tachycardia syndrome (POTS) and explore its significance. A total of 65 subjects were recruited in our study, of whom 35 children were in the POTS group and 30 healthy children were in the control group. Plasma Hcy levels were determined in all subjects. The relationship between the plasma Hcy level and the symptom score was analyzed in the 35 POTS patients. The relationship between the plasma Hcy level and the change in heart rate from the supine to upright position (ΔHR) and between the plasma Hcy level and the rate of increase in heart rate from the supine to upright position (ΔHR/sHR × 100%) were analyzed in all subjects. The plasma Hcy levels were significantly higher in the children with POTS than those in the control group (9.78 [7.68, 15.31] μmol/L vs. 7.79 [7.46, 9.63] μmol/L, P < 0.05). The plasma Hcy levels were positively correlated with symptom scores in the POTS patients (n = 35, r = 0.522, P < 0.01). The plasma Hcy levels were also positively correlated with ΔHR (n = 65, r = 0.332, P < 0.01) and ΔHR/sHR × 100% (n = 65, r = 0.341, P < 0.01) in all the subjects. In conclusion, the plasma Hcy levels were elevated in the children with POTS positively correlated with the severity of POTS, suggesting that Hcy might be involved in the pathogenesis of POTS

    Ион-парная ВЭЖХ производных пиримидина и пурина

    Get PDF
    ПИРИМИДИНЫГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ ОДНОКОЛЬЦЕВЫЕПУРИНЫГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ ДВУХКОЛЬЦЕВЫЕХРОМАТОГРАФИЯ ЖИДКОСТНАЯ ВЫСОКОГО ДАВЛЕНИЯХРОМАТОГРАФИЯ ИОНООБМЕННАЯДНКРНКПРОТИВООПУХОЛЕВЫЕ СРЕДСТВАПРОТИВОВИРУСНЫЕ СРЕДСТВ

    Sulfur Dioxide Activates Cl-/HCO3- Exchanger via Sulphenylating AE2 to Reduce Intracellular pH in Vascular Smooth Muscle Cells

    Get PDF
    Sulfur dioxide (SO2) is a colorless and irritating gas. Recent studies indicate that SO2 acts as the gas signal molecule and inhibits vascular smooth muscle cell (VSMC) proliferation. Cell proliferation depends on intracellular pH (pHi). Transmembrane cystein mutation of Na+- independent Cl-/HCO3- exchanger (anion exchanger, AE) affects pHi. However, whether SO2 inhibits VSMC proliferation by reducing pHi is still unknown. Here, we investigated whether SO2 reduced pHi to inhibit the proliferation of VSMCs and explore its molecular mechanisms. Within a range of 50–200 μM, SO2 was found to lower the pHi in VSMCs. Concurrently, NH4Cl pre-perfusion showed that SO2 significantly activated AE, whereas the AE inhibitor 4,4′-diisothiocyanatostilbene- 2,20-disulfonic acid (DIDS) significantly attenuated the effect of SO2 on pHi in VSMCs. While 200 μM SO2 sulphenylated AE2, while dithiothreitol (DTT) blocked the sulphenylation of AE2 and subsequent AE activation by SO2, thereby restoring the pHi in VSMCs. Furthermore, DIDS pretreatment eliminated SO2-induced inhibition of PDGF-BB-stimulated VSMC proliferation. We report for the first time that SO2 inhibits VSMC proliferation in part by direct activation of the AE via posttranslational sulphenylation and induction of intracellular acidification

    Value of Immediate Heart Rate Alteration From Supine to Upright in Differential Diagnosis Between Vasovagal Syncope and Postural Tachycardia Syndrome in Children

    Get PDF
    Objectives: To explore the predictive value of immediate heart rate alteration from supine to upright in the differential diagnosis between vasovagal syncope (VVS) and postural tachycardia syndrome (POTS) in children.Materials and Methods: A total of 76 pediatric outpatients or inpatients who visited the Peking University First Hospital from July 2016 to November 2017 were recruited in the study. Among them, 52 patients were diagnosed with VVS and 24 patients were diagnosed with POTS. The differential diagnostic value of acceleration index (AI) and 30/15 ratio was evaluated by the receiver operating characteristic (ROC) curve. An external validation test was performed in another 46 patients.Results: Compared with the cases in the VVS group, patients in the POTS group had a significantly increased AI but a decreased 30/15 ratio (33.495 ± 8.472 vs. 23.440 ± 8.693, p < 0.001; 0.962 ± 0.067 vs. 1.025 ± 0.084, p = 0.002; respectively). The ROC curves showed that AI and 30/15 ratio were useful for differentiating POTS from VVS. A cut-off value of AI set at 28.180 yielded a sensitivity of 79.2% and a specificity of 73.1%. A cut-off value of 30/15 ratio set at 1.025 yielded a sensitivity of 87.5% and a specificity of 61.5%. A combined use of these two indices improved the sensitivity to 95.8% when either AI or 30/15 was used, and specificity to 80.8% with the use of both AI and 30/15 at the same diagnosis. The external validation test showed that the positive and negative predictive values of the AI and 30/15 ratio were 77.3 and 79.2%, and 72.0 and 81.0%, respectively. The positive predictive value increased to 87.5% when both the AI and 30/15 ratio cut-off values were used together.Conclusions: The AI and 30/15 ratio, which are easy to perform and non-invasive, have proper sensitivity and specificity to differentiate patients with POTS from those with VVS. The combination of these two indices significantly improves the predictive value
    corecore