695 research outputs found

    3-D finite element analysis of the effects of post location and loading location on stress distribution in root canals of the mandibular 1st molar

    Get PDF
    Objective The purpose of this study was to evaluate, by using finite element analysis, the influence of post location and occlusal loading location on the stress distribution pattern inside the root canals of the mandibular 1st molar. Material and Methods Three different 3-D models of the mandibular 1st molar were established: no post (NP) – a model of endodontic and prosthodontic treatments; mesiobuccal post (MP) – a model of endodontic and prosthodontic treatments with a post in the mesiobuccal canal; and distal post (DP) – a model of endodontic and prosthodontic treatments with a post in the distal canal. A vertical force of 300 N, perpendicular to the occlusal plane, was applied to one of five 1 mm2 areas on the occlusal surface; mesial marginal ridge, distal marginal ridge, mesiobuccal cusp, distobuccal cusp, and central fossa. Finite element analysis was used to calculate the equivalent von Mises stresses on each root canal. Results The DP model showed similar maximum stress values to the NP model, while the MP model showed markedly greater maximum stress values. The post procedure increased stress concentration inside the canals, although this was significantly affected by the site of the force. Conclusions In the mandibular 1st molar, the distal canal is the better place to insert the post than the mesiobuccal canal. However, if insertion into the mesiobuccal canal is unavoidable, there should be consideration on the occlusal contact, making central fossa and distal marginal ridge the main functioning areas

    A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography

    Get PDF
    Decoding neural signals into control outputs has been a key to the development of brain-computer interfaces (BCIs). While many studies have identified neural correlates of kinematics or applied advanced machine learning algorithms to improve decoding performance, relatively less attention has been paid to optimal design of decoding models. For generating continuous movements from neural activity, design of decoding models should address how to incorporate movement dynamics into models and how to select a model given specific BCI objectives. Considering nonlinear and independent speed characteristics, we propose a hybrid Kalman filter to decode the hand direction and speed independently. We also investigate changes in performance of different decoding models (the linear and Kalman filters) when they predict reaching movements only or predict both reach and rest. Our offline study on human magnetoencephalography (MEG) during point-to-point arm movements shows that the performance of the linear filter or the Kalman filter is affected by including resting states for training and predicting movements. However, the hybrid Kalman filter consistently outperforms others regardless of movement states. The results demonstrate that better design of decoding models is achieved by incorporating movement dynamics into modeling or selecting a model according to decoding objectives.open0

    B Cell Immunophenotyping and Transcriptional Profiles of Memory B Cells in Patients with Myasthenia Gravis

    Get PDF
    Myasthenia gravis (MG) is an autoimmune neuromuscular junction disorders mediated by various autoantibodies. Although most patients with MG require chronic immunosuppressive treatment to control disease activity, appropriate surveillance biomarkers that monitor disease activity or potential toxicity of immunosuppressants are yet to be developed. Herein, we investigated quantitative distribution of peripheral blood B cell subsets and transcriptional profiles of memory B cells (CD19+ CD27+) in several subgroups of MG patients classified according to the Myasthenia Gravis Foundation of America (MGFA) Clinical Classification. This study suggests potential immunologic B-cell markers that may guide treatment decision in future clinical settings.N

    Anticancer Efficacy of Cordyceps militaris

    Get PDF
    Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis

    Src Is a Prime Target Inhibited by Celtis choseniana

    Get PDF
    Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses

    Spheroid-Induced Epithelial-Mesenchymal Transition Provokes Global Alterations of Breast Cancer Lipidome: A Multi-Layered Omics Analysis

    Get PDF
    Metabolic rewiring has been recognized as an important feature to the progression of cancer. However, the essential components and functions of lipid metabolic networks in breast cancer progression are not fully understood. In this study, we investigated the roles of altered lipid metabolism in the malignant phenotype of breast cancer. Using a spheroid-induced epithelial-mesenchymal transition (EMT) model, we conducted multi-layered lipidomic and transcriptomic analysis to comprehensively describe the rewiring of the breast cancer lipidome during the malignant transformation. A tremendous homeostatic disturbance of various complex lipid species including ceramide, sphingomyelin, ether-linked phosphatidylcholines, and ether-linked phosphatidylethanolamine was found in the mesenchymal state of cancer cells. Noticeably, polyunsaturated fatty acids composition in spheroid cells was significantly decreased, accordingly with the gene expression patterns observed in the transcriptomic analysis of associated regulators. For instance, the up-regulation of SCD, ACOX3, and FADS1 and the down-regulation of PTPLB, PECR, and ELOVL2 were found among other lipid metabolic regulators. Significantly, the ratio of C22:6n3 (docosahexaenoic acid, DHA) to C22:5n3 was dramatically reduced in spheroid cells analogously to the down-regulation of ELOVL2. Following mechanistic study confirmed the up-regulation of SCD and down-regulation of PTPLB, PECR, ELOVL2, and ELOVL3 in the spheroid cells. Furthermore, the depletion of ELOVL2 induced metastatic characteristics in breast cancer cells via the SREBPs axis. A subsequent large-scale analysis using 51 breast cancer cell lines demonstrated the reduced expression of ELOVL2 in basal-like phenotypes. Breast cancer patients with low ELOVL2 expression exhibited poor prognoses (HR = 0.76, CI = 0.67–0.86). Collectively, ELOVL2 expression is associated with the malignant phenotypes and appear to be a novel prognostic biomarker in breast cancer. In conclusion, the present study demonstrates that there is a global alteration of the lipid composition during EMT and suggests the down-regulation of ELOVL2 induces lipid metabolism reprogramming in breast cancer and contributes to their malignant phenotypes

    Anti-Inflammatory Effect of Piper attenuatum

    Get PDF
    Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME) on the production of inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2), the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-), pam3CSK4-, and poly(I:C)-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos), as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p-) p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway

    Dendritic Cells as Danger-Recognizing Biosensors

    Get PDF
    Dendritic cells (DCs) are antigen presenting cells that are characterized by a potent capacity to initiate immune responses. DCs comprise several subsets with distinct phenotypes. After sensing any danger(s) to the host via their innate immune receptors such as Toll-like receptors, DCs become mature and subsequently present antigens to CD4+ T cells. Since DCs possess the intrinsic capacity to polarize CD4+ helper cells, it is critical to understand the immunological roles of DCs for clinical applications. Here, we review the different DC subsets, their danger-sensing receptors and immunological functions. Furthermore, the cytokine reporter mouse model for studying DC activation is introduced
    corecore