200 research outputs found

    Virtual reality applications in robotic simulations

    Get PDF
    Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities

    A variable near-infrared counterpart to the neutron-star low-mass X-ray binary 4U 1705-440

    Get PDF
    We report the discovery of a near-infrared (nIR) counterpart to the persistent neutron-star low-mass X-ray binary 4U 1705-440, at a location consistent with its recently determined Chandra X-ray position. The nIR source is highly variable, with K_s-band magnitudes varying between 15.2 and 17.3 and additional J- and H-band observations revealing color variations. A comparison with contemporaneous X-ray monitoring observations shows that the nIR brightness correlates well with X-ray flux and X-ray spectral state. We also find possible indications for a change in the slope of the nIR/X-ray flux relation between different X-ray states. We discuss and test various proposed mechanisms for the nIR emission from neutron-star low-mass X-ray binaries and conclude that the nIR emission in 4U 1705-440 is most likely dominated by X-ray heating of the outer accretion disk and the secondary star.Comment: Accepted for publication in Ap

    Polarised infrared emission from X-ray binary jets

    Full text link
    Near-infrared (NIR) and optical polarimetric observations of a selection of X-ray binaries are presented. The targets were observed using the Very Large Telescope and the United Kingdom Infrared Telescope. We detect a significant level (3 sigma) of linear polarisation in four sources. The polarisation is found to be intrinsic (at the > 3 sigma level) in two sources; GRO J1655-40 (~ 4-7% in H and Ks-bands during an outburst) and Sco X-1 (~ 0.1-0.9% in H and K), which is stronger at lower frequencies. This is likely to be the signature of optically thin synchrotron emission from the collimated jets in these systems, whose presence indicates a partially-ordered magnetic field is present at the inner regions of the jets. In Sco X-1 the intrinsic polarisation is variable (and sometimes absent) in the H and K-bands. In the J-band (i.e. at higher frequencies) the polarisation is not significantly variable and is consistent with an interstellar origin. The optical light from GX 339-4 is also polarised, but at a level and position angle consistent with scattering by interstellar dust. The other polarised source is SS 433, which has a low level (0.5-0.8%) of J-band polarisation, likely due to local scattering. The NIR counterparts of GRO J0422+32, XTE J1118+480, 4U 0614+09 and Aql X-1 (which were all in or near quiescence) have a linear polarisation level of < 16% (3 sigma upper limit, some are < 6%). We discuss how such observations may be used to constrain the ordering of the magnetic field close to the base of the jet in such systems.Comment: Accepted to be published in MNRAS; 13 pages, 6 figure

    HAS AN INTEGRATED PEST MANAGEMENT APPROACH REDUCED BLACKBIRD DAMAGE TO SUNFLOWER?

    Get PDF
    Since the mid- 1970s many new and modified damage abatement methods have been used to reduce blackbird damage to ripening sunflower in the northern Great Plains. To assess the overall impact of these techniques, we analyzed the dynamic relationship between breeding blackbird densities and sunflower damage. Breeding density estimates were made at both the regional and county levels, whereas, sunflower damage estimates were made at the county level only. Periodic regional estimates of breeding densities between 1967 and 1998 for red-winged blackbirds (Agelaius phoeniceus), common grackles (Quiscalus quiscula), and yellow-headed blackbirds (Xanthocephalus xanthocephalus) showed no differences among years. To increase our ability to detect changes in breeding density, we started intensive county-level surveys in 1996. These surveys, in four counties in North Dakota and South Dakota, showed that blackbird densities were greater in 1998 and 1999 than during the previous two years. We surveyed sunflower damage in two of these counties from 1994 to 1998 and found no difference in damage (F= 1.8%) among years. In 1997 and 1998, with the two other counties added to the survey, we found that damage was similar between years, averaging 2.2%. Dollar loss per hectare was trending lower in three of the study counties that had a historical database for comparison. This supports the idea that \u27local\u27 breeding densities are not correlated with damage levels. We will continue to use annual estimates of breeding densities and sunflower damage to assess the effects of an evolving Integrated Pest Management program

    Large amplitude variability from the persistent ultracompact X-ray binary in NGC 1851

    Full text link
    Using archival RXTE data, we show that the ultracompact X-ray binary in NGC 1851 exhibits large amplitude X-ray flux varations of more than a factor of 10 on timescales of days to weeks and undergoes sustained periods of months where the time-averaged luminosty varies by factors of two. Variations of this magnitude and timescale have not been reported previously in other ultracompact X-ray binaries. Mass transfer in ultracompact binaries is thought to be driven by gravitational radiation and the predicted transfer rates are so high that the disks of ultracompact binaries with orbits as short as that of this object should not be susceptible to ionization instabilities. Therefore the variability characteristics we observe were unexpected, and need to be understood. We briefly discuss a few alternatives for producing the observed variations in light of the fact that the viscous timescale of the disk is of order a week, comparable to the shorter time scale variation that is observed but much less than the longer term variation. We also discuss the implications for interpretation of observations of extragalactic binaries if the type of variability seen in the source in NGC 1851 is typical.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Connectome architecture shapes large-scale cortical alterations in schizophrenia: a worldwide ENIGMA study

    Get PDF
    Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia

    Parsec-Scale Blazar Monitoring: Flux and Polarization Variability

    Get PDF
    We present analysis of the flux and polarization variability of parsec scale radio jets from a dual-frequency, six-epoch, VLBA polarization experiment monitoring 12 blazars. The observations were made at 15 and 22 GHz at bimonthly intervals over 1996. Here we analyze the flux, fractional polarization, and polarization position angle behavior of core regions and jet features, considering both the linear trends of these quantities with time and more rapid fluctuations about the linear trends. The dual frequency nature of the observations allows us to examine spectral evolution, to separate Faraday effects from changes in magnetic field order, and also to deduce empirical estimates for the uncertainties in measuring properties of VLBI jet features (abridged).Comment: 35 pages, 30 figures, accepted by the Astrophysical Journal (Changes from original version: typos corrected and a clarification in terminology

    PKS 1510-089: A Head-On View of a Relativistic Jet

    Get PDF
    The gamma-ray blazar PKS 1510-089 has a highly superluminal milli-arcsecond jet at a position angle (PA) of -28 degrees and an arcsecond jet with an initial PA of 155 degrees. With a PA difference of 177 degrees between the arcsecond and milli-arcsecond jets, PKS 1510-089 is perhaps the most highly misaligned radio jet ever observed and serves as a graphic example of projection effects in a highly beamed relativistic jet. Here we present the results of observations designed to bridge the gap between the milli-arcsecond and arcsecond scales. We find that a previously detected ``counter-feature'' to the arcsecond jet is directly fed by the milli-arcsecond jet. This feature is located 0.3" from the core, corresponding to a de-projected distance of 30 kiloparsecs. The feature appears to be dominated by shocked emission and has an almost perfectly ordered magnetic field along its outside edge. We conclude that it is most likely a shocked bend, viewed end-on, where the jet crosses our line of sight to form the southern arcsecond jet. While the bend appears to be nearly 180 degrees when viewed in projection, we estimate the intrinsic bending angle to be between 12 and 24 degrees. The cause of the bend is uncertain; however, we favor a scenario where the jet is bent after it departs the galaxy, either by ram pressure due to winds in the intracluster medium or simply by the density gradient in the transition to the intergalactic medium.Comment: 8 pages, 4 figures, Accepted for publication in Ap

    The Long-Term Variability of the X-Ray Sources in NGC 6946 and NGC 4485/4490

    Full text link
    We analyze data from five Chandra observations of the spiral galaxy NGC 6946 and from three Chandra observations of the irregular/spiral interacting galaxy pair NGC 4485/4490, with an emphasis on investigating the long-term variability exhibited by the source populations. We detect 90 point sources coincident with NGC 6946 down to luminosities of a few times 10^36 erg/s, and 38 sources coincident with NGC 4485/90 down to a luminosity of ~1x10^37 erg/s. Twenty-five (15) sources in NGC 6946 (NGC 4485/90) exhibit long-term (i.e., weeks to years) variability in luminosity; 11 (4) are transient candidates. The single ultraluminous X-ray source (ULX) in NGC 6946 and all but one of the eight ULXs in NGC 4485/90 exhibit long-term flux variability. Two of the ULXs in NGC 4485/90 have not been identified before as ultraluminous sources. The widespread variability in both systems is indicative of the populations being dominated by X-ray binaries, and this is supported by the X-ray colors of the sources. The distribution of colors among the sources indicates a large fraction of high-mass X-ray binaries in both systems. The shapes of the X-ray luminosity functions of the galaxies do not change significantly between observations and can be described by power laws with cumulative slopes ~0.6-0.7 (NGC 6946) and ~0.4 (NGC 4485/90).Comment: 26 pages, 9 figures, 15 tables - to appear in the August 2008 issue of ApJS - new version corrects a few typo

    Advancing drug discovery through assay development: a survey of tool compounds within the human solute carrier superfamily

    Get PDF
    With over 450 genes, solute carriers (SLCs) constitute the largest transporter superfamily responsible for the uptake and efflux of nutrients, metabolites, and xenobiotics in human cells. SLCs are associated with a wide variety of human diseases, including cancer, diabetes, and metabolic and neurological disorders. They represent an important therapeutic target class that remains only partly exploited as therapeutics that target SLCs are scarce. Additionally, many small molecules reported in the literature to target SLCs are poorly characterized. Both features may be due to the difficulty of developing SLC transport assays that fulfill the quality criteria for high-throughput screening. Here, we report one of the main limitations hampering assay development within the RESOLUTE consortium: the lack of a resource providing high-quality information on SLC tool compounds. To address this, we provide a systematic annotation of tool compounds targeting SLCs. We first provide an overview on RESOLUTE assays. Next, we present a list of SLC-targeting compounds collected from the literature and public databases; we found that most data sources lacked specificity data. Finally, we report on experimental tests of 19 selected compounds against a panel of 13 SLCs from seven different families. Except for a few inhibitors, which were active on unrelated SLCs, the tested inhibitors demonstrated high selectivity for their reported targets. To make this knowledge easily accessible to the scientific community, we created an interactive dashboard displaying the collected data in the RESOLUTE web portal (https://re-solute.eu). We anticipate that our open-access resources on assays and compounds will support the development of future drug discovery campaigns for SLCs
    • …
    corecore