1,166 research outputs found
Cool Stars and Space Weather
Stellar flares, winds and coronal mass ejections form the space weather. They
are signatures of the magnetic activity of cool stars and, since activity
varies with age, mass and rotation, the space weather that extra-solar planets
experience can be very different from the one encountered by the solar system
planets. How do stellar activity and magnetism influence the space weather of
exoplanets orbiting main-sequence stars? How do the environments surrounding
exoplanets differ from those around the planets in our own solar system? How
can the detailed knowledge acquired by the solar system community be applied in
exoplanetary systems? How does space weather affect habitability? These were
questions that were addressed in the splinter session "Cool stars and Space
Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In
this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar
Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur
Precision spectroscopy of the 3s-3p fine structure doublet in Mg+
We apply a recently demonstrated method for precision spectroscopy on strong
transitions in trapped ions to measure both fine structure components of the
3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference
data for transition frequencies, isotope shifts and fine structure splittings
that are in particular useful for comparison with quasar absorption spectra,
which test possible space-time variations of the fine structure constant. The
measurement accuracy improves previous literature values, when existing, by
more than two orders of magnitude
A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph
A wavelength calibration system based on a laser frequency comb (LFC) was
developed in a co-operation between the Kiepenheuer-Institut f\"ur
Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik,
Garching, Germany for permanent installation at the German Vacuum Tower
Telescope (VTT) on Tenerife, Canary Islands. The system was installed
successfully in October 2011. By simultaneously recording the spectra from the
Sun and the LFC, for each exposure a calibration curve can be derived from the
known frequencies of the comb modes that is suitable for absolute calibration
at the meters per second level. We briefly summarize some topics in solar
physics that benefit from absolute spectroscopy and point out the advantages of
LFC compared to traditional calibration techniques. We also sketch the basic
setup of the VTT calibration system and its integration with the existing
echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012
Laser frequency combs for astronomical observations
A direct measurement of the universe's expansion history could be made by
observing in real time the evolution of the cosmological redshift of distant
objects. However, this would require measurements of Doppler velocity drifts of
about 1 centimeter per second per year, and astronomical spectrographs have not
yet been calibrated to this tolerance. We demonstrate the first use of a laser
frequency comb for wavelength calibration of an astronomical telescope. Even
with a simple analysis, absolute calibration is achieved with an equivalent
Doppler precision of approximately 9 meters per second at about 1.5 micrometers
- beyond state-of-the-art accuracy. We show that tracking complex, time-varying
systematic effects in the spectrograph and detector system is a particular
advantage of laser frequency comb calibration. This technique promises an
effective means for modeling and removal of such systematic effects to the
accuracy required by future experiments to see direct evidence of the
universe's putative acceleration.Comment: Science, 5th September 2008. 18 pages, 7 figures (7 JPG files),
including Supporting Online Material. Version with higher resolution figures
available at http://astronomy.swin.edu.au/~mmurphy/pub.htm
A Frequency Comb calibrated Solar Atlas
The solar spectrum is a primary reference for the study of physical processes
in stars and their variation during activity cycles. In Nov 2010 an experiment
with a prototype of a Laser Frequency Comb (LFC) calibration system was
performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla
during which high signal-to-noise spectra of the Moon were obtained. We exploit
those Echelle spectra to study the optical integrated solar spectrum . The
DAOSPEC program is used to measure solar line positions through gaussian
fitting in an automatic way. We first apply the LFC solar spectrum to
characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and
Th-Ar calibrated spectra reveals S-type distortions on each order along the
whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern
found by Wilken et al. (2010) on a single order and extends the detection of
the distortions to the whole analyzed region revealing that the precise shape
varies with wavelength. A new data reduction is implemented to deal with CCD
pixel inequalities to obtain a wavelength corrected solar spectrum. By using
this spectrum we provide a new LFC calibrated solar atlas with 400 line
positions in the range of 476-530, and 175 lines in the 534-585 nm range. The
new LFC atlas improves the accuracy of individual lines by a significant factor
reaching a mean value of about 10 m/s. The LFC--based solar line wavelengths
are essentially free of major instrumental effects and provide a reference for
absolute solar line positions. We suggest that future LFC observations could be
used to trace small radial velocity changes of the whole solar photospheric
spectrum in connection with the solar cycle and for direct comparison with the
predicted line positions of 3D radiative hydrodynamical models of the solar
photosphere.Comment: Accept on the 15th of October 2013. 9 pages, 10 figures. ON-lINE data
A&A 201
Optical Properties of Superconducting Nanowire Single-Photon Detectors
We measured the optical absorptance of superconducting nanowire single photon
detectors. We found that 200-nm-pitch, 50%-fill-factor devices had an average
absorptance of 21% for normally-incident front-illumination of
1.55-um-wavelength light polarized parallel to the nanowires, and only 10% for
perpendicularly-polarized light. We also measured devices with lower
fill-factors and narrower wires that were five times more sensitive to
parallel-polarized photons than perpendicular-polarized photons. We developed a
numerical model that predicts the absorptance of our structures. We also used
our measurements, coupled with measurements of device detection efficiencies,
to determine the probability of photon detection after an absorption event. We
found that, remarkably, absorbed parallel-polarized photons were more likely to
result in detection events than perpendicular-polarized photons, and we present
a hypothesis that qualitatively explains this result. Finally, we also
determined the enhancement of device detection efficiency and absorptance due
to the inclusion of an integrated optical cavity over a range of wavelengths
(700-1700 nm) on a number of devices, and found good agreement with our
numerical model.Comment: will appear in optics express with minor revision
Skyrmion Quantization and the Decay of the Delta
We present the complete solution to the so-called ``Yukawa problem'' of the
Skyrme model. This refers to the perceived difficulty of reproducing---purely
from soliton physics---the usual pseudovector pion-nucleon coupling, echoed by
pion coupling to the higher spin/isospin baryons in a manner fixed by large- group theory. The solution involves
surprisingly elegant interplay between the classical and quantum properties of
a new configuration, the ``new improved skyrmion''. This is the near-hedgehog
obtained by minimizing the usual skyrmion mass functional augmented by an
all-important isorotational kinetic term. The numerics are pleasing: a
decay width within a few MeV of its measured value, and furthermore, the
higher-spin baryons with widths so large ()
that these undesirable large- artifacts effectively drop out of the
spectrum, and pose no phenomenological problem. Beyond these specific results,
we ground the Skyrme model in the Feynman Path Integral, and set up a
transparent collective coordinate formalism that makes maximal use of the
expansion. This approach elucidates the connection between skyrmions on
the one hand, and Feynman diagrams in an effective field theory on the other.Comment: This TeX file inputs the macropackage harvmac.tex . Choose the ``b''
(big) option or equations will overrun
The Casimir energy of skyrmions in the 2+1-dimensional O(3)-model
One-loop quantum corrections to the classical vortices in 2+1 dimensional
O(3)-models are evaluated. Skyrme and Zeeman potential terms are used to
stabilize the size of topological solitons. Contributions from zero modes,
bound-states and scattering phase-shifts are calculated for vortices with
winding index n=1 and n=2. For both cases the S-matrix shows a pronounced
series of resonances for magnon-vortex scattering in analogy to the
well-established baryon resonances in hadron physics, while vortices with n>2
are already classically unstable against decay. The quantum corrections
destabilize the classically bound n=2 configuration. Approximate independence
of the results with respect to changes in the renormalization scale is
demonstrated.Comment: 24 pages LaTeX, 14 figure
Operatorial quantization of Born-Infeld Skyrmion model and hidden symmetries
The SU(2) collective coordinates expansion of the Born-Infeld\break Skyrmion
Lagrangian is performed. The classical Hamiltonian is computed from this
special Lagrangian in approximative way: it is derived from the expansion of
this non-polynomial Lagrangian up to second-order variable in the collective
coordinates. This second-class constrained model is quantized by Dirac
Hamiltonian method and symplectic formalism. Although it is not expected to
find symmetries on second-class systems, a hidden symmetry is disclosed by
formulating the Born-Infeld Skyrmion %model as a gauge theory. To this end we
developed a new constraint conversion technique based on the symplectic
formalism. Finally, a discussion on the role played by the hidden symmetry on
the computation of the energy spectrum is presented.Comment: A new version of hep-th/9901133. To appear in JP
- …