2,210 research outputs found

    Automatic transcription of Turkish makam music

    Get PDF
    In this paper we propose an automatic system for transcribing/nmakam music of Turkey. We document the specific/ntraits of this music that deviate from properties that/nwere targeted by transcription tools so far and we compile/na dataset of makam recordings along with aligned microtonal/nground-truth. An existing multi-pitch detection algorithm/nis adapted for transcribing music in 20 cent resolution,/nand the final transcription is centered around the/ntonic frequency of the recording. Evaluation metrics for/ntranscribing microtonal music are utilized and results show/nthat transcription of Turkish makam music in e.g. an interactive/ntranscription software is feasible using the current/nstate-of-the-art.This work is partly supported by the European/nResearch Council under the European Union’s Seventh/nFramework Program, as part of the CompMusic project/n(ERC grant agreement 267583)

    Incorporating pitch class profiles for improving automatic transcription of Turkish makam music

    Get PDF
    In this paper we evaluate the impact of including knowledge about scale material into a system for the transcription of Turkish makam music. To this end, we extend our previously presented approach by a refinement iteration that gives preference to note values present in the scale of the mode (i.e. makam). The information about the scalar material is provided in form of pitch class profiles, and they are imposed in form of a Dirichlet prior to our expanded probabilistic latent component analysis (PLCA) transcription system. While the inclusion of such a prior was supposed to focus the transcription system on musically meaningful areas, the obtained results are significantly improved only for recordings of certain instruments. In our discussion we demonstrate the quality of the obtained transcriptions, and discuss the difficulties caused for evaluation in the context of microtonal music

    Composite infrared bolometers with Si_3N_4 micromesh absorbers

    Get PDF
    We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G

    A Sunyaev-Zel'dovich Effect Survey for High Redshift Clusters

    Get PDF
    Interferometric observations of the Sunyaev-Zel'dovich Effect (SZE) toward clusters of galaxies provide sensitive cosmological probes. We present results from 1 cm observations (at BIMA and OVRO) of a large, intermediate redshift cluster sample. In addition, we describe a proposed, higher sensitivity array which will enable us to survey large portions of the sky. Simulated observations indicate that we will be able to survey one square degree of sky per month to sufficient depth that we will detect all galaxy clusters more massive than 2x10^{14} h^{-1}_{50}M_\odot, regardless of their redshift. We describe the cluster yield and resulting cosmological constraints from such a survey.Comment: 7 pages, 6 figures, latex, contribution to VLT Opening Symposiu

    Cosmological Parameter Extraction from the First Season of Observations with DASI

    Full text link
    The Degree Angular Scale Interferometer (\dasi) has measured the power spectrum of the Cosmic Microwave Background anisotropy over the range of spherical harmonic multipoles 100<l<900. We compare this data, in combination with the COBE-DMR results, to a seven dimensional grid of adiabatic CDM models. Adopting the priors h>0.45 and 0.0<=tau_c<=0.4, we find that the total density of the Universe Omega_tot=1.04+/-0.06, and the spectral index of the initial scalar fluctuations n_s=1.01+0.08-0.06, in accordance with the predictions of inflationary theory. In addition we find that the physical density of baryons Omega_b.h^2=0.022+0.004-0.003, and the physical density of cold dark matter Omega_cdm.h^2=0.14+/-0.04. This value of Omega_b.h^2 is consistent with that derived from measurements of the primordial abundance ratios of the light elements combined with big bang nucleosynthesis theory. Using the result of the HST Key Project h=0.72+/-0.08 we find that Omega_t=1.00+/-0.04, the matter density Omega_m=0.40+/-0.15, and the vacuum energy density Omega_lambda=0.60+/-0.15. (All 68% confidence limits.)Comment: 7 pages, 4 figures, minor changes in response to referee comment
    • 

    corecore