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ABSTRACT

In this paper, a novel method for onset detection of music

signals using auditory spectra is proposed. The auditory

spectrogram provides a time-frequency representation that

employs a sound processing model resembling the human

auditory system. Recent work on onset detection employs

DFT-based features, such as the spectral flux and group

delay function. The spectral flux and group delay are in-

troduced in the auditory framework and an onset detection

algorithm is proposed. Experiments are conducted on a

dataset covering 11 pitched instrument types, consisting of

1829 onsets in total. Results indicate the superiority of

the auditory representations over the DFT-based ones, with

the auditory spectral flux exhibiting an onset detection im-

provement by 2% in terms of F-measure when compared

to the DFT-based feature.

1. INTRODUCTION

The detection of the starting time of each musical note

plays an important role in the analysis of music signals.

This process is referred to as musical instrument onset de-

tection and it is an essential step for music transcription

applications, as well as for music signal compression, beat

tracking, and music information retrieval. The goal of an

onset detection system is the accurate estimation of note

onset times, regardless of the instrument type or perfor-

mance style. Several approaches for pitched instrument

onset detection have been proposed in the literature, how-

ever they are mostly limited to a small number of instru-

ment classes.

In [1], an onset detection system combining both en-

ergy and phase information was proposed. The employed

dataset contained pitched nonpercussive, pitched percus-

sive, nonpitched percussive, and complex sounds. Reported

results indicated an improvement over energy and phase-

based approaches. An improved version of the system in

[1] was proposed in [4], tested on the same dataset. In [3],

a system for onset detection employing a constant-Q pitch
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detector was proposed, tested on the pitched nonpercussive

sounds also employed in [1]. It is also suggested in [3] that

a detector based on a computational auditory model might

improve onset detection performance. Gainza et al. em-

ployed FIR comb filters on a frame by frame basis combin-

ing the inharmonicity properties with the energy increases

of the signal onset [5]. Results report an improvement offer

energy-based and phase-based approaches. Finally in [6],

the group delay function was proposed for onset detection

in a beat tracking application. Multiband analysis was per-

formed on two datasets, the first from the MIREX 2006

beat tracking task and the second containing samples of

traditional Cretan music.

In this paper, a novel approach for onset detection is

proposed by employing auditory spectrograms instead of

DFT-derived spectrograms for the computation of onsets

detection features. The auditory spectra, based on the model

presented in [11], are designed to mimic the functions of

the human auditory system. In the auditory domain, the

group delay and spectral flux features are introduced, and

an onset detection system is proposed. Comparative exper-

iments on onset detection were performed using the same

features in the DFT domain. The dataset used for exper-

imentation contains a wide variety of pitched instrument

types, not limited to western instruments, containing 1829

onsets in total. Results indicate that the auditory features

outperform DFT-based features for onset detection, with

the auditory spectral flux reaching an F-measure of 75.9%.

The outline of the paper is as follows. Section 2 is de-

voted to the DFT-based features and system for onset de-

tection. In Section 3, the auditory model and features are

presented, along with the proposed onset detection system.

The employed dataset, the methods used for evaluation and

the experimental results are discussed in Section 4. Con-

clusions are drawn and future directions are indicated in

Section 5.

2. DFT-BASED ONSET DETECTION

2.1 Group Delay

As described in [6], phase information can be used for on-

set detection by considering the group delay τ(ω), which
for a given signal x[n] with a phase spectrum Φ(ω) is de-
fined as the derivative of phase over frequency:

τ(ω) = −
dφ(ω)

dω
(1)
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The average of the group delay is determined by the dis-

tance between the center of the analysis window and the

position of an impulse within the window, even when the

impulse has been filtered by a causal and stable filter. As

the onset of a musical instrument might be modelled by

an impulse sent into a causal and stable system, in [6] the

average group delay is used as an onset detection func-

tion: using a large overlap, an analysis window is shifted

over the signal and for each window position the average

group delay is computed. The obtained sequence of aver-

age group delays is referred to as phase slope function. In

Figure 1, an example of a phase slope function is depicted

by the dashed line which has positive zero crossings at the

position of impulses in the signal. In order to avoid error

problems when unwrapping phase in the group delay com-

putation, the slope of the phase function can be computed

as [10]:

τ(ω) =
XR(ω)YR(ω) + XI(ω)YI(ω)

|X(ω)|2
(2)

where
X(ω) = XR(ω) + jXI(ω)
Y (ω) = YR(ω) + jYI(ω)

are the Fourier Transforms of x[n] and nx[n], respectively.
The phase slope is then computed as the negative of the av-

erage of the group delay function. In this paper, the imple-

mentation of the phase slope onset detector as presented in

[7] has been used, which includes a multiband processing

of the complex DFT spectra and band-wise zero-crossing

selection for increased accuracy. The resulting group de-

lay onset detection signal, computed from the band-wise

zero-crossing selection, contains peaks located at the time

instants of the detected onsets.

2.2 Spectral Flux

Spectral flux (SF) is based on the detection of sudden pos-

itive energy changes in the signal which indicate attack

parts of new notes. The accuracy of onset detection us-

ing SF and its computational simplicity were presented

in [2, 4]. SF is computed as:

SF (k) =
∑

ω

HW (|X(ω, k)| − |X(ω, k − 1)|) (3)

where HW (x) = x+|x|
2

is the half wave rectifier function,

and X(ω, k) is the STFT of the signal with 5.6ms hop size

and a window length h of 46ms. For the experiments in

this paper, the L1-norm SF is used as shown in (3), since it

was shown in [4] that it outperforms the L2-norm.

2.3 DFT-based Onset Detection System

Onsets are detected by selecting the zero crossings of the

phase slope and the local maxima of the spectral ux de-

tection signals. The onset detection method has been mo-

tivated by the processing steps proposed in [1]: first, the

detection signals are smoothed using a Hanning window

of length 51ms, which was found to be crucial for im-

proving onset detection results. Afterwards, the signals

are normalized using z-score. In [7], the application of

an adaptive threshold has been shown to improve accuracy

for SF, while it was found be impaired in case of PS. For

that reason, an adaptive threshold is applied to SF only. It

is computed by applying a moving median lter of length

97ms which is subtracted from the SF detection signals.

Finally, a peak selection algorithm is performed in order

to produce the detected onsets, by selecting peaks that are

separated by a minimum peak distance of 40ms.

3. AUDITORY SPECTRUM-BASED ONSET

DETECTION

In this Section the auditory model is presented, followed

by the definition of the group delay function and spectral

flux in the auditory spectrum domain. Finally, an onset

detection system using auditory spectra is proposed.

3.1 Auditory Model

The auditory model was first introduced in [13] and for-

malized in [11]. It is inspired by physiological, psychoa-

coustical and computational studies in the human primary

auditory cortex. The model consists of two stages, a spec-

tral estimation model (designed to mimic the cochlea in the

auditory system) and spectral analysis model (which mim-

ics the primary auditory cortex). The spectral estimation

model produces the so-called auditory spectrogram.

The auditory spectrum produces a time-frequency rep-

resentation of the signal on a logarithmically scaled fre-

quency axis, referred as the tonotopic axis. The auditory

spectrogram consists of 128 log-frequency bins and can be

approximated as:

XA[n, l] = max(∂lg(∂nx[n] ∗n h[n, l]), 0), (4)

where x[n] is the original signal and h[n, l] is a minimum-

phase seed bandpass filter where h[n, l] = αh[αn, l0], with
scaling factor α = 2l−l0 and l = 1, . . . , 129. The convo-
lution of x[n] with h[n, l] is an application of a constant-Q
filter-bank wavelet transform. ∂i stands for differentiation

over i, and g(m) = 1

1+e−m
− 1

2
is a sigmoid-like function,

which is used to model the hair cell response in the human

auditory system. It should be noted that in (4) two oper-

ations are not mentioned for simplicity purposes, they are

however employed for the auditory spectra computation.

The first consists of a temporal smoothing operation which

filters out responses beyond 4 kHz and the second consists

of a temporal integration of XA[n, l], which is followed by
subsampling.

3.2 Auditory Group Delay

According to (2), and by noting that XA[n, l] has no imag-

inary values like the DFT-based group delay, the proposed

function for computing the group delay in the auditory
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Figure 1. A sequence of impulses with linearly time

varying amplitudes, the associated DFT-based group de-

lay function (dashed line), and the associated auditory

spectrum-based group delay function (dashed-dotted line).

spectrum is defined as:

AUD GRD[n, l] =
YA[n, l]

XA[n, l]
, (5)

where YA[n, l] is the auditory spectrum of nx[n]. Due to

the differentiation factor ∂n in (4), onsets are detected by

determining the positions of positive peaks rather than pos-

itive zero-crossings. In Figure 1, the auditory spectrum-

based group delay that is obtained when shifting an anal-

ysis window over a sample signal is depicted as a dashed-

dotted line. Note that the term group delay was preferred

for the detection function instead of auditory phase slope,

because no average value has been computed for neighbor-

ing bands as is the case for the DFT-based phase slope.

The processing steps for the computation of the onset

detection signal, based on the auditory spectrum group de-

lay function, can be seen in Figure 2. The auditory spec-

trum was computed using the NSL toolbox [9]. For the

computation of the auditory spectrum the window length

is set to 0.1s, with 4.5ms hop size and the resulted spectro-

gram is computed for a bandwidth of 76-3242 Hz. In pro-

cessing block 2, the auditory group delay function is com-

puted from auditory spectrograms XA[n, l] and YA[n, l]
using (5). For our analysis, tonotopic bands b = 10, . . . , 39
of the auditory spectrogram were utilized, thus ignoring

bands containing high-frequency noise, as well as bands

ranging from 76-104 Hz which are not crucial for onset

detection purposes, because these frequencies are below

the F0 range of the investigated instruments. In processing

block 3 of Figure 2, each band is smoothed in time using a

3rd degree Savitzky-Golay filter with window size equal to

12 samples [12]. The Savitzky-Golay filter uses local poly-

nomial regression and is considered superior compared to

FIR filters or moving average filters, preserving the local

maxima of the signal while rejecting noise. In processing

block 4, for each group delay band, peak picking is per-

formed in order to select candidate onsets. For each band,

an onset detection signal is constructed containing either

the value zero when no peak has been detected, or the am-

plitude of the detected peak. In each band b, a threshold for

peak detection is determined separately by the mean value

of the half-wave rectified group delay function for the par-

Sample

0 100 200 300 400 500 600 700 800 900 1000

Figure 3. The spectral flux onset strength signals of a

tanbur recording. The lower-placed signal depicts the au-

ditory spectrum-derived spectral flux, while the higher-

placed signal depicts the DFT-based spectral flux. The ‘x’

marker corresponds to the annotated onset time.

ticular band. Finally, all band-wise detection signals are

summed, creating a single onset detection signal based on

the auditory group delay.

3.3 Auditory Spectral Flux

The spectral difference in the auditory domain is defined

in a similar manner to the group delay. The spectral flux in

the auditory spectrum is defined using the L1 norm:

AUD SF [n] =
∑

l

HW (XA[n, l] − XA[n − 1, l]). (6)

For the auditory spectral flux, the original signal is re-

sampled to 8kHz and the spectral flux is computed with

a step size of 8ms. It should be noted that no band-wise

smoothing or band selection was performed on the audi-

tory spectral flux, since it was found to degrade onset de-

tection performance. In Figure 3, the auditory spectrum-

based and DFT-based spectral flux onset strength signals

of a tanbur (plucked string instrument) recording are de-

picted. The annotated onset times can also be seen, as well

as a false detection for the DFT-based spectral flux at sam-

ple 790.

3.4 Auditory Spectrum-based Onset Detection System

Onsets from the auditory group delay and spectral flux

detection signals are detected using roughly the same ap-

proach as for the DFT representations, by selecting the lo-

cal maxima of the signals. First, each detection function

is normalized using z-score standardization. Afterwards,

a moving median filter of length 0.2s is computed as an

adaptive threshold, which is a robust method for detecting

impulses in audio signals [8]. The adaptive threshold is

then subtracted from the detection signals. Finally, peak

picking is performed, by selecting peaks that are higher

than threshold δ and are separated by a minimum peak dis-

tance of 40ms.

107



Poster Session 1

wav AUDITORY

SPECTR.

GROUP

DELAY

BAND

SMOOTHING

PEAK

SELECTION
+
AUD_GRD_OSS

Figure 2. Block diagram of the computation of the auditory spectrum-based group delay.

Instrument No. of onsets No. of files

Cello 150 5

Clarinet 149 5

Guitar 174 5

Kemençe 186 5

Ney 147 7

Ud 211 5

Piano 195 5

Saxophone 148 5

Tanbur 156 5

Trumpet 140 5

Violin 173 5

Total 1829 57

Table 1. Onset dataset details.

4. EXPERIMENTS

4.1 Dataset

In our experiments, the dataset introduced in [7] was em-

ployed. It consists of 57 recordings of pitched instruments,

including 11 instrument types, as seen in Table 1. The var-

ious instrument types can be organized into three classes:

pitched-percussive instruments (guitar, ud, piano, and tan-

bur), wind instruments (clarinet, ney, saxophone, and trum-

pet), and bowed string instruments (cello, kemençe, and vi-

olin). It should be noted that the set is not limited to west-

ern instruments, but also contains middle-eastern instru-

ment samples. In total, the recordings contain 1829 anno-

tated onsets, while each instrument type contains roughly

the same number of onsets. All recordings are monophonic,

sampled at 44.1kHz.

4.2 Evaluation Methods

For evaluating the results of the proposed onset detection

systems, the recall (R), precision (P ), and F-measure (F )

are employed as figures of merit. Let Ntp stand for the

number of correctly detected onsets, Nfp the number of

false positives, and Nfn the number of missed onsets. P

and R are defined as:

P =
Ntp

Ntp + Nfp

, R =
Ntp

Ntp + NFN

(7)

while the F-measure is computed from P and R:

F =
2PR

P + R
(8)

It should be noted that P , R, and F are utilized for eval-

uation in the MIREX onset detection contests. An onset

Feature GRD SF AUD GRD AUD SF

F-measure 73.7% 73.9% 73.8% 75.9%

Table 2. F-measures for the various onset detection fea-

tures.

is correctly matched if it is detected within 50ms of the

ground truth onset time. By varying parameter δ in small

steps, P /R-curves can be created by placing R values on

the horizontal axis and P values on the vertical one. The

P /R-curve which is closer to the upper right corner of the

diagram is considered to be the best detector with regards

to F .

4.3 Results

The performance of the various onset detection features is

shown in P /R-curves in Figure 4. In Figure 3(a) the per-

formance of the complete dataset as described in Table 1

is shown. Regarding the optimum F-measure, the DFT-

based group delay and spectral flux along with the audi-

tory group delay seem to perform almost equally good, but

they are surpassed by the auditory spectral flux. The best

F-measures on the complete dataset can be seen in Table

2, where it can be seen that the auditory spectral flux out-

performs the other three features by about 2% in terms of

F-measure. The auditory group delay performs marginally

better than its DFT-based counterpart, achieving high pre-

cision rates. In general, the auditory-based features outper-

form their respective DFT-based features.

As far as the individual instrument types are concerned,

the auditory group delay exhibits very high precision rates

for the set of string instruments in Figure 3(b), making it

useful for beat tracking tasks. However, the auditory group

delay is vastly outperformed by the remaining three fea-

tures when pitched percussive instruments are employed

in Figure 3(c), with the DFT-based spectral flux achieving

very high precision and recall rates. The DFT-based spec-

tral flux slightly outperforms the auditory spectrum-based

spectral flux for pitched percussive instruments, which can

be attributed to the limited frequency range of the auditory

spectrum, since percussive onsets are detected in high fre-

quency bands [2]. It should be noted that all features report

high rates for pitched percussive instruments compared to

string and wind instruments. Finally, the set of wind instru-

ments in Figure 3(d) shows lower precision rates compared

to the other sets. The auditory features achieve roughly the

same best F-measure, outperforming the DFT-based fea-

tures.
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Figure 4. Performance curves of the various onset detection features. Recall and Precision values are plotted on the

horizontal and vertical axis, respectively.

5. CONCLUSIONS

In this paper a new approach for onset detection using au-

ditory spectra was proposed. The group delay function and

spectral flux in the auditory domain were introduced as fea-

tures for onset detection, and a system was proposed. The

onset detection performance of the auditory spectral flux

was found to be superior compared to the DFT-based fea-

ture, reaching an F-measure of 75.9% compared to 73.9%

of the DFT-based spectral flux. While the performance

of the auditory spectral flux for pitched percussive instru-

ments was inferior compared to DFT-based features, it is

relatively superior when string and wind instruments are

tested.

In the future, a fusion of the onset detection features in

the auditory domain will be performed, in an attempt to

maximize onset detection performance. The system could

also consider onsets produced by non-pitched percussive

instruments, which can be easily detected using energy de-

scriptors. In addition, the creation of an onset detection

system which is dependent of the instrument family can

lead to improved results. Finally, the aforementioned tech-

niques can be developed for usage in polyphonic record-

ings.
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