2,712 research outputs found
Incorporation of H_2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy
Incorporation mechanisms of H_2 in silica glass were studied with Raman and
infrared (IR) microspectroscopy. Hydrogenated samples were prepared at
temperatures between 800 deg C and 955 deg C at 2 kbar total pressure. Hydrogen
fugacities (f_{H_2}) were controlled using the double capsule technique with
the iron-w\"ustite (IW) buffer assemblage generating f_{H_2} of 1290-1370 bars
corresponding to H_2 partial pressures (P_{H_2}) of 960-975 bars. We found that
silica glass hydrogenated under such conditions contains molecular hydrogen
(H_2) in addition to SiH and SiOH groups. H_2 molecules dissolved in the
quenched glasses introduce a band at 4136 cm^{-1} in the Raman spectra which in
comparison to that of gaseous H_2 is wider and is shifted to lower frequency.
IR spectra of hydrogenated samples contain a band at 4138 cm^{-1} which we
assign to the stretching vibration of H_2 molecules located in
non-centrosymmetric sites. The Raman and IR spectra indicate that the dissolved
H_2 molecules interact with the silicate network. We suggest that the H_2 band
is the envelope of at least three components due to the occupation of at least
three different interstitial sites by H_2 molecules. Both, Raman and IR spectra
of hydrogenated glasses contain bands at ~2255 cm^{-1} which may be due to the
vibration of SiH groups
Recommended from our members
Assessing impacts to groundwater from CO2-flooding of SACROC and Claytonville oil fields in West Texas
Comparison of groundwater above two Permian Basin oil fields (SACROC Unit and
Claytonville Field) near Snyder, Texas should allow us to assess potential impacts of 30 years of
CO2-injection. CO2-flooding for enhanced oil recovery (EOR) has been active at SACROC in
Scurry County since 1972. Approximately 13.5 million tons per year (MtCO2/yr) are injected
with withdrawal/recycling amounting to ~7MtCO2/yr. It is estimated that the site has accumulated
more than 55MtCO2; however, no rigorous investigation of overlying groundwater has
demonstrated that CO2 is trapped in the subsurface. Mineralogy of reservoir rocks at the
Claytonville field in southwestern Fisher County is similar to SACROC. CO2-EOR is scheduled
to begin at Claytonville Field in Fisher County in early 2007. Here we have the opportunity to
characterize groundwater prior to CO2-injection and establish baseline conditions at Claytonville.
Methods of this study will include: (1) examination of existing analyses of saline to fresh
water samples collected within an eight-county area encompassing SACROC and Claytonville,
(2) additional groundwater sampling for analysis of general chemistry plus field-measured pH,
alkalinity, and temperature, stable isotopic ratios of hydrogen (D/H), oxygen (18O/16O), and
carbon (13C/12C), and (3) geochemical equilibrium and flowpath modeling. Existing groundwater
data are available from previous BEG studies, Texas Water Development Board, Kinder Morgan
CO2 Company, and the U. S. Geological Survey. By examining these data we will identify
regional groundwater variability and focus additional sampling efforts. The objective of this study
is to look for potential impacts to shallow groundwater from deep CO2-injection. In the absence
of conduit flow from depth, we don’t expect to see impacts to shallow groundwater, but
methodology to demonstrate this to regulators needs to be established.
This work is a subset of the Southwest Regional Partnership on Carbon Sequestration
Phase 2studies funded by the Department of Energy (DOE) in cooperation with industry and
government partners.Bureau of Economic Geolog
Effects of three previewing tactics on the oral reading performance of fourth-grade students
Thesis (M.S.Ed.)--University of Kansas, Curriculum and Instruction, 1984
Heatshield material selection for advanced ballistic reentry vehicles
The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance
How Much Does Money Matter in a Direct Democracy?
The fine-structure splitting of quantum confined InxGa1-x Nexcitons is investigated using polarization-sensitive photoluminescence spectroscopy. The majority of the studied emission lines exhibits mutually orthogonal fine-structure components split by 100-340 mu eV, as measured from the cleaved edge of the sample. The exciton and the biexciton reveal identical magnitudes but reversed sign of the energy splitting.Original Publication:Supaluck Amloy, Y T Chen, K F Karlsson, K H Chen, H C Hsu, C L Hsiao, L C Chen and Per-Olof Holtz, Polarization-resolved fine-structure splitting of zero-dimensional InxGa1-xN excitons, 2011, PHYSICAL REVIEW B, (83), 20, 201307.http://dx.doi.org/10.1103/PhysRevB.83.201307Copyright: American Physical Societyhttp://www.aps.org
Functions preserving nonnegativity of matrices
The main goal of this work is to determine which entire functions preserve
nonnegativity of matrices of a fixed order -- i.e., to characterize entire
functions with the property that is entrywise nonnegative for every
entrywise nonnegative matrix of size . Towards this goal, we
present a complete characterization of functions preserving nonnegativity of
(block) upper-triangular matrices and those preserving nonnegativity of
circulant matrices. We also derive necessary conditions and sufficient
conditions for entire functions that preserve nonnegativity of symmetric
matrices. We also show that some of these latter conditions characterize the
even or odd functions that preserve nonnegativity of symmetric matrices.Comment: 20 pages; expanded and corrected to reflect referees' remarks; to
appear in SIAM J. Matrix Anal. App
Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise
The Primitive Equations are a basic model in the study of large scale Oceanic
and Atmospheric dynamics. These systems form the analytical core of the most
advanced General Circulation Models. For this reason and due to their
challenging nonlinear and anisotropic structure the Primitive Equations have
recently received considerable attention from the mathematical community.
In view of the complex multi-scale nature of the earth's climate system, many
uncertainties appear that should be accounted for in the basic dynamical models
of atmospheric and oceanic processes. In the climate community stochastic
methods have come into extensive use in this connection. For this reason there
has appeared a need to further develop the foundations of nonlinear stochastic
partial differential equations in connection with the Primitive Equations and
more generally.
In this work we study a stochastic version of the Primitive Equations. We
establish the global existence of strong, pathwise solutions for these
equations in dimension 3 for the case of a nonlinear multiplicative noise. The
proof makes use of anisotropic estimates, estimates on the
pressure and stopping time arguments.Comment: To appear in Nonlinearit
Regulation of major histocompatibility complex class II gene expression in trophoblast cells
Trophoblast cells are unique because they are one of the few mammalian cell types that do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to IFN-γ. The absence of MHC class II antigen expression on trophoblast cells has been postulated to be one of the essential mechanisms by which the semi-allogeneic fetus evades immune rejection reactions by the maternal immune system. Consistent with this hypothesis, trophoblast cells from the placentas of women suffering from chronic inflammation of unknown etiology and spontaneous recurrent miscarriages have been reported to aberrantly express MHC class II antigens. The lack of MHC class II antigen expression on trophoblast cells is due to silencing of expression of the class II transactivator (CIITA), a transacting factor that is essential for constitutive and IFN-γ-inducible MHC class II gene transcription. Transfection of trophoblast cells with CIITA expression vectors activates both MHC class II and class Ia antigen expression, which confers on trophoblast cells both the ability to activate helper T cells, and sensitivity to lysis by cytotoxic T lymphocytes. Collectively, these studies strongly suggest that stringent silencing of CIITA (and therefore MHC class II) gene expression in trophoblast cells is critical for the prevention of immune rejection responses against the fetus by the maternal immune system. The focus of this review is to summarize studies examining the novel mechanisms by which CIITA is silenced in trophoblast cells. The elucidation of the silencing of CIITA in trophoblast cells may shed light on how the semi-allogeneic fetus evades immune rejection by the maternal immune system during pregnancy
- …