343 research outputs found
Structural plasticity underlies experience-dependent functional plasticity of cortical circuits
The stabilization of new spines in the barrel cortex is enhanced after whisker trimming, but its relationship to experience-dependent plasticity is unclear. Here we show that in wild-type mice, whisker potentiation and spine stabilization are most pronounced for layer 5 neurons at the border between spared and deprived barrel columns. In homozygote alphaCaMKII-T286A mice, which lack experience-dependent potentiation of responses to spared whiskers, there is no increase in new spine stabilization at the border between barrel columns after whisker trimming. Our data provide a causal link between new spine synapses and plasticity of adult cortical circuits and suggest that alphaCaMKII autophosphorylation plays a role in the stabilization but not formation of new spines
Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability
Excitatory synapses in the CNS are highly dynamic structures that can show activity- dependent remodeling and stabilization in response to learning and memory. Synapses are enveloped with intricate processes of astrocytes known as perisynaptic astrocytic processes (PAPs). PAPs are motile structures displaying rapid actin-dependent movements and are characterized by Ca²⁺ elevations in response to neuronal activity. Despite a debated implication in synaptic plasticity, the role of both Ca²⁺ events in astrocytes and PAP morphological dynamics remain unclear.Results In the hippocampus, we found that PAPs show extensive structural plasticity that is regulated by synaptic activity through astrocytic metabotropic glutamate receptors and intracellular calcium signaling. Synaptic activation that induces long-term potentiation caused a transient PAP motility increase leading to an enhanced astrocytic coverage of the synapse. Selective activation of calcium signals in individual PAPs using exogenous metabotropic receptor expression and two-photon uncaging reproduced these effects and enhanced spine stability. In vivo imaging in the somatosensory cortex of adult mice revealed that increased neuronal activity through whisker stimulation similarly elevates PAP movement. This in vivo PAP motility correlated with spine coverage and was predictive of spine stability.Conclusions This study identifies a novel bidirectional interaction between synapses and astrocytes, in which synaptic activity and synaptic potentiation regulate PAP structural plasticity, which in turn determines the fate of the synapse. This mechanism may represent an important contribution of astrocytes to learning and memory processes
Experience-Dependent, Rapid Structural Changes in Hippocampal Pyramidal Cell Spines
Morphological changes in dendritic spines may contribute to the fine tuning of neural network connectivity. The relationship between spine morphology and experience-dependent neuronal activity, however, is largely unknown. In the present study, we combined 2 histological analyses to examine this relationship: 1) Measurement of spines of neurons whose morphology was visualized in brain sections of mice expressing membrane-targeted green florescent protein (Thy1-mGFP mice) and 2) Categorization of CA1 neurons by immunohistochemical monitoring of Arc expression as a putative marker of recent neuronal activity. After mice were exposed to a novel, enriched environment for 60 min, neurons that expressed Arc had fewer small spines and more large spines than Arc-negative cells. These differences were not observed when the exploration time was shortened to 15 min. This net-balanced structural change is consistent with both synapse-specific enhancement and suppression. These results provide the first evidence of rapid morphological changes in spines that were preferential to a subset of neurons in association with an animal's experiences
Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice
The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau
Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images
A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function
Glutamate Induces the Elongation of Early Dendritic Protrusions via mGluRs in Wild Type Mice, but Not in Fragile X Mice
Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable. This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3 neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5 signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which may be a critical step to initiate synaptogenesis and stabilize spines
Adjustment disorder in cancer patients after treatment:Prevalence and acceptance of psychological treatment
PURPOSE: To investigate the prevalence of adjustment disorder (AD) among cancer patients and the acceptance of psychological treatment, in relation to sociodemographic, clinical, and psychological factors. METHODS: Breast, prostate, and head and neck cancer patients of all stages and treatment modalities (N = 200) participated in this observational study. Patients completed the Hospital Anxiety and Depression Scale, Checklist Individual Strength, Distress Thermometer and problem list. Patients with increased risk on AD based on these questionnaires were scheduled for a diagnostic interview. Patients diagnosed with AD were invited to participate in a randomized controlled trial on the cost-effectiveness of psychological treatment. Participation in this trial was used as a proxy of acceptance of psychological treatment. Logistic regression analyses were used to investigate associated factors. RESULTS: The overall prevalence of AD was estimated at 13.1%. Sensitivity analyses showed prevalence rates of AD of 11.5%, 15.0%, and 23.5%. Acceptance of psychological treatment was estimated at 65%. AD was associated both with being employed (OR = 3.3, CI = 1.3–8.4) and having a shorter time since diagnosis (OR = 0.3, CI = 0.1–0.8). CONCLUSION: Taking sensitivity analysis into account, the prevalence of AD among cancer patients is estimated at 13 to 15%, and is related to being employed and having a shorter time since diagnosis. The majority of cancer patients with AD accept psychological treatment
F-Actin-Dependent Regulation of NESH Dynamics in Rat Hippocampal Neurons
Synaptic plasticity is an important feature of neurons essential for learning and memory. Postsynaptic organization and composition are dynamically remodeled in response to diverse synaptic inputs during synaptic plasticity. During this process, the dynamics and localization of postsynaptic proteins are also precisely regulated. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family. Overexpression of NESH is associated with reduced cell motility and tumor metastasis. Strong evidence of a close relationship between NESH and the actin cytoskeleton has been documented. Although earlier studies have shown that NESH is prominently expressed in the brain, its function and characteristics are yet to be established. Data from the present investigation suggest that synaptic localization of NESH in hippocampal neurons is regulated in an F-actin-dependent manner. The dynamic fraction of NESH in the dendritic spine was analyzed using FRAP (fluorescence recovery after photobleaching). Interestingly, F-actin stabilization and disruption significantly affected the mobile fraction of NESH, possibly through altered interactions of NESH with the F-actin. In addition, NESH was synaptically targeted from the dendritic shaft to spine after induction of chemical LTP (long-term potentiation) and the translocation was dependent on F-actin. Our data collectively support the significance of the F-actin cytoskeleton in synaptic targeting of NESH as well as its dynamics
An Automated Method to Quantify Microglia Morphology and Application to Monitor Activation State Longitudinally In Vivo
Microglia are specialized immune cells of the brain. Upon insult, microglia initiate a cascade of cellular responses including a characteristic change in cell morphology. To study the dynamics of microglia immune response in situ, we developed an automated image analysis method that enables the quantitative assessment of microglia activation state within tissue based solely on cell morphology. Per cell morphometric analysis of fluorescently labeled microglia is achieved through local iterative threshold segmentation, which reduces errors caused by signal-to-noise variation across large volumes. We demonstrate, utilizing systemic application of lipopolysaccharide as a model of immune challenge, that several morphological parameters, including cell perimeter length, cell roundness and soma size, quantitatively distinguish resting versus activated populations of microglia within tissue comparable to traditional immunohistochemistry methods. Furthermore, we provide proof-of-concept data that monitoring soma size enables the longitudinal assessment of microglia activation in the mouse neocortex imaged via 2-photon in vivo microscopy. The ability to quantify microglia activation automatically by shape alone allows unbiased and rapid analysis of both fixed and in vivo central nervous system tissue
In vivo multiphoton imaging reveals gradual growth of newborn amyloid plaques over weeks
The kinetics of amyloid plaque formation and growth as one of the characteristic hallmarks of Alzheimer’s disease (AD) are fundamental issues in AD research. Especially the question how fast amyloid plaques grow to their final size after they are born remains controversial. By long-term two-photon in vivo imaging we monitored individual methoxy-X04-stained amyloid plaques over 6 weeks in 12 and 18 months old Tg2576 mice. We found that in 12 months old mice, newly appearing amyloid plaques were initially small in volume and subsequently grew over time. The growth rate of plaques was inversely proportional to their volume; thus amyloid plaques that were already present at the first imaging time point grew over time but slower compared to new plaques. Additionally, we analyzed 18 months old Tg2576 mice in which we neither found newly appearing plaques nor a significant growth of pre-existing plaques over 6 weeks of imaging. In conclusion, newly appearing amyloid plaques are initially small in size but grow over time until plaque growth can not be detected anymore in aged mice. These results suggest that drugs that target plaque formation should be most effective early in the disease, when plaques are growing
- …