786 research outputs found

    Fiscal Consolidation Programs and Income Inequality

    Get PDF
    We document a strong empirical relationship between higher income inequality and stronger recessive impacts of fiscal consolidation episodes across time and space. To explain this finding, we develop a life-cycle economy with uninsurable income risk. We calibrate our model to match key characteristics of several European economies, including inequality and fiscal structures, and study the effects of fiscal consolidation programs. In our model, higher income risk induces precautionary savings behavior, which decreases the proportion of credit-constrained agents in the economy. These agents have less elastic labor supply responses to fiscal consolidations, which explain the correlation with inequality in the data

    Disorder-to-order transition in the magnetic and electronic properties of URh_2Ge_2

    Get PDF
    We present a study of annealing effects on the physical properties of tetragonal single--crystalline URh_2Ge_2. This system, which in as-grown form was recently established as the first metallic 3D random-bond heavy-fermion spin glass, is transformed by an annealing treatment into a long-range antiferromagnetically (AFM) ordered heavy-fermion compound. The transport properties, which in the as-grown material were dominated by the structural disorder, exhibit in the annealed material signs of typical metallic behavior along the crystallographic a axis. From our study URh_2Ge_2 emerges as exemplary material highlighting the role and relevance of structural disorder for the properties of strongly correlated electron systems. We discuss the link between the magnetic and electronic behavior and how they are affected by the structural disorder.Comment: Phys. Rev. B, in print (scheduled 1 Mar 2000

    EU research on social sciences and humanities: The social problem of men volume 1

    Get PDF
    Within the Fifth Framework Programme of the European Union for Research and Technological Development (RTD), the Key Action "Improving the socio-economic knowledge base" carried broad and ambitious objectives, namely to improve our understanding of the structural changes taking place in European society, to identify ways of managing these changes and to promote the active involvement of European citizens in shaping their own futures. A further important aim was to mobilise the research communities in the social sciences and humanities at the European level and to provide scientific support to policies at various levels, with particular attention to EU policy fields

    Weak pairwise correlations imply strongly correlated network states in a neural population

    Get PDF
    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher order interactions among large groups of elements play an important role. In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that this collective behavior is described quantitatively by models that capture the observed pairwise correlations but assume no higher order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behavior. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah (http://cosyne.org

    Will systems biology offer new holistic paradigms to life sciences?

    Get PDF
    A biological system, like any complex system, blends stochastic and deterministic features, displaying properties of both. In a certain sense, this blend is exactly what we perceive as the “essence of complexity” given we tend to consider as non-complex both an ideal gas (fully stochastic and understandable at the statistical level in the thermodynamic limit of a huge number of particles) and a frictionless pendulum (fully deterministic relative to its motion). In this commentary we make the statement that systems biology will have a relevant impact on nowadays biology if (and only if) will be able to capture the essential character of this blend that in our opinion is the generation of globally ordered collective modes supported by locally stochastic atomisms

    Systematic review of the uptake and design of action research in published nursing research, 2000-2005

    Get PDF
    Action research (AR) is promoted for health care development. A systematic review was undertaken to gain insight into the uptake and designs of practice-based AR. Empirical research papers from 2000 to 2005 were extracted from CINAHL, MEDLINE and British Nursing Index, and two specialist AR journals. The initial search identified 335 papers: 38% were AR (20% were phenomenology; 32% ethnography; 10% randomised-controlled trials). Further filtering produced 62 AR papers for detailed analysis. Eighty-seven per cent of AR studies involved ‘organisational/professional development’, or ‘educational’ settings; only 13% were directly ‘clinical’. Practitioners were the main participants in 90% of studies. Seventy-two per cent of all participant groups were rated ‘active’ in the research process, yet 70% of first (lead) authors were from an academic institution. Patients/carers were generally passive in the research process and absent from the authorship. Ninety per cent of studies used two or more methods, predominantly qualitative. Forty-four per cent of articles identified external funding sources, relatively high for nursing research. Participatory AR has a strong identity in practice-based research, with a diversity of methods. The focus reflects that of nursing research generally. A high level of participation by practitioners is evident but with little equity in authorship. Service user/carer involvement should be given more prominence by researchers

    Microarray gene expression profiling and analysis in renal cell carcinoma

    Get PDF
    BACKGROUND: Renal cell carcinoma (RCC) is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. METHODS: Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. RESULTS: Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR). Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. CONCLUSIONS: This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most notably, genes involved in cell adhesion were dominantly up-regulated whereas genes involved in transport were dominantly down-regulated. This study reveals significant gene expression alterations in key biological pathways and provides potential insights into understanding the molecular mechanism of renal cell carcinogenesis

    Optimal In Silico Target Gene Deletion through Nonlinear Programming for Genetic Engineering

    Get PDF
    Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized.Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy.Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial-and-error procedure

    Steps to improve gender diversity in the fields of coastal geosciences and engineering

    Get PDF
    Robust data are the base of effective gender diversity policy. Evidence shows that gender inequality is still pervasive in science, technology, engineering and mathematics (STEM). Coastal geoscience and engineering (CGE) encompasses professionals working on coastal processes, integrating expertise across physics, geomorphology, engineering, planning and management. The article presents novel results of gender inequality and experiences of gender bias in CGE, and proposes practical steps to address it. It analyses the gender representation in 9 societies, 25 journals, and 10 conferences in CGE and establishes that women represent 30% of the international CGE community, yet there is under-representation in prestige roles such as journal editorial board members (15% women) and conference organisers (18% women). The data show that female underrepresentation is less prominent when the path to prestige roles is clearly outlined and candidates can self-nominate or volunteer instead of the traditional invitation-only pathway. By analysing the views of 314 survey respondents (34% male, 65% female, and 1% ‘‘other’’), we show that 81% perceive the lack of female role models as a key hurdle for gender equity, and a significantly larger proportion of females (47%) felt held back in their careers due to their gender in comparison with males (9%). The lack of women in prestige roles and senior positions contributes to 81% of survey respondents perceiving the lack of female role models in CGE as a key hurdle for gender equality. While it is clear that having more women as role models is important, this is not enough to effect change. Here seven practical steps towards achieving gender equity in CGE are presented: (1) Advocate for more women in prestige roles; (2) Promote high-achieving females; (3) Create awareness of gender bias; (4) Speak up; (5) Get better support for return to work; (6) Redefine success; and, (7) Encourage more women to enter the discipline at a young age. Some of these steps can be successfully implemented immediately (steps 1–4), while others need institutional engagement and represent major societal overhauls. In any case, these seven practical steps require actions that can start immediately
    corecore