24,210 research outputs found

    Oceanic wave measurement system

    Get PDF
    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion

    Vacuum application of thermal barrier plasma coatings

    Get PDF
    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator

    Low-dimensional models for turbulent plane Couette flow in a minimal flow unit

    Get PDF
    We model turbulent plane Couette flow in the minimal flow unit (MFU) – a domain whose spanwise and streamwise extent is just sufficient to maintain turbulence – by expanding the velocity field as a sum of optimal modes calculated via proper orthogonal decomposition from numerical data. Ordinary differential equations are obtained by Galerkin projection of the Navier–Stokes equations onto these modes. We first consider a 6-mode (11-dimensional) model and study the effects of including losses to neglected modes. Ignoring these, the model reproduces turbulent statistics acceptably, but fails to reproduce dynamics; including them, we find a stable periodic orbit that captures the regeneration cycle dynamics and agrees well with direct numerical simulations. However, restriction to as few as six modes artificially constrains the relative magnitudes of streamwise vortices and streaks and so cannot reproduce stability of the laminar state or properly account for bifurcations to turbulence as Reynolds number increases. To address this issue, we develop a second class of models based on ‘uncoupled’ eigenfunctions that allow independence among streamwise and cross-stream velocity components. A 9-mode (31-dimensional) model produces bifurcation diagrams for steady and periodic states in qualitative agreement with numerical Navier–Stokes solutions, while preserving the regeneration cycle dynamics. Together, the models provide empirical evidence that the ‘backbone’ for MFU turbulence is a periodic orbit, and support the roll–streak–breakdown–roll reformation picture of shear-driven turbulence

    Nanoparticle transport in saturated porous medium using magnetic resonance imaging

    Get PDF
    Transport study of nanoparticle (NP) through matrix flow dominated aquifer sand and soils have significant influence in natural systems. To quantify the transport behaviour, magnetic resonance imaging (MRI) was used to image the iron oxide based nanoparticle, Molday ION (carboxyl terminated) through saturated sandstone rock core. T2-weighted images were acquired and the changes in image intensity were calibrated to get a quantitative concentration profiles at various time intervals. These profiles were evaluated through CXTFIT transport model to estimate the transport parameters. These parameters are estimated at various points along the length of the column while classical breakthrough curve analysis cannot provide these details. NP–surface interactions were investigated using DLVO (Derjaguin–Landau–Verwey–Overbeek) theory. The dispersion coefficients (2.55–1.21 × 10−7 m2/s) were found to be decrease with distance, deposition rate constant k (6.70–9.13 × 10−4 (1/s)) and fast deposition rate constant kfast (4.32–8.79 × 10−2 (1/s)) were found to be increase with distance. These parameter variations over length will have a scaling up impact in developing transport models for environmental remediation and risk assessment schemes

    Advances in large-diameter liquid encapsulated Czochralski GaAs

    Get PDF
    The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates

    High purity low dislocation GaAs single crystals

    Get PDF
    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm

    Alternative derivation of the Feigel effect and call for its experimental verification

    Full text link
    A recent theory by Feigel [Phys. Rev. Lett. {\bf 92}, 020404 (2004)] predicts the finite transfer of momentum from the quantum vacuum to a fluid placed in strong perpendicular electric and magnetic fields. The momentum transfer arises because of the optically anisotropic magnetoelectric response induced in the fluid by the fields. After summarising Feigel's original assumptions and derivation (corrected of trivial mistakes), we rederive the same result by a simpler route, validating Feigel's semi-classical approach. We then derive the stress exerted by the vacuum on the fluid which, if the Feigel hypothesis is correct, should induce a Poiseuille flow in a tube with maximum speed ≈100μ\approx 100\mum/s (2000 times larger than Feigel's original prediction). An experiment is suggested to test this prediction for an organometallic fluid in a tube passing through the bore of a high strength magnet. The predicted flow can be measured directly by tracking microscopy or indirectly by measuring the flow rate (≈1\approx 1ml/min) corresponding to the Poiseuille flow. A second experiment is also proposed whereby a `vacuum radiometer' is used to test a recent prediction that the net force on a magnetoelectric slab in the vacuum should be zero.Comment: 20 pages, 1 figures. revised and improved versio

    Responding to accents after experiencing interactive or mediated speech

    Get PDF
    Very little known is about how speakers learn about and/or respond to speech experienced without the possibility for interaction. This paper reports an experiment which considers the effects of two kinds of exposure to speech (interactive or non-interactive mediated) on Scottish English speakers’ responses to another accent (Southern British English), for two processing tasks, phonological awareness and speech production. Only marginal group effects are found according to exposure type. The main findings show a difference between subjects according to exposure type before exposure, and individual shifts in responses to speech according to exposure type
    • …
    corecore