26,604 research outputs found

    A comparison of Manchester symbol tracking loops for block 5 applications

    Get PDF
    The linearized tracking errors of three Manchester (biphase coded) symbol tracking loops are compared to determine which is appropriate for Block 5 receiver applications. The first is a nonreturn to zero (NRZ) symbol synchronizer loop operating at twice the symbol rate (NRZ x 2) so that it operates on half symbols. The second near optimally processes the mid-symbol transitions and ignores the between symbol transitions. In the third configuration, the first two approaches are combined as a hybrid to produce the best performance. Although this hybrid loop is the best at low symbol signal to noise ratios (SNRs), it has about the same performance as the NRZ x 2 loop at higher SNRs (greater than 0-dB E sub s/N sub 0). Based on this analysis, it is tentatively recommended that the hybrid loop be implemented for Manchester data in the Block 5 receiver. However, the high data rate case and the hardware implications of each implementation must be understood and analyzed before the hybrid loop is recommended unconditionally

    Critique of a Hughes shuttle Ku-band data sampler/bit synchronizer

    Get PDF
    An alternative bit synchronizer proposed for shuttle was analyzed in a noise-free environment by considering the basic operation of the loop via timing diagrams and by linearizing the bit synchronizer as an equivalent, continuous, phased-lock loop (PLL). The loop is composed of a high-frequency phase-frequency detector which is capable of detecting both phase and frequency errors and is used to track the clock, and a bit transition detector which attempts to track the transitions of the data bits. It was determined that the basic approach was a good design which, with proper implementation of the accumulator, up/down counter and logic should provide accurate mid-bit sampling with symmetric bits. However, when bit asymmetry occurs, the bit synchronizer can lock up with a large timing error, yet be quasi-stable (timing will not change unless the clock and bit sequence drift). This will result in incorrectly detecting some bits

    Critique of the Hughes Aircraft shuttle Ku band leading edge bit synchronizer

    Get PDF
    A bit synchronizer is analyzed via timing diagrams in a noise-free environment. It is believed that this new bit synchronizer will track the rising edge of the data bits with 25% asymmetry and up to a 90 deg phase shift between the received clock and data bit timing. In addition, the data bits will be demodulated correctly. It is not true that phase shifts larger than 90 deg will necessarily be corrected by this bit synchronizer. However, the specifications currently require the loop to operate over only a + or - 75 deg phase shift between the received data stream leading edges and the bit synchronizer leading edges; consequently, there should be no problem

    Shuttle orbiter Ku-band radar/communications system design evaluation. Ku band bent-pipe channel performance evaluation

    Get PDF
    Because of difficulties with the bit detector of the SPA mode 1 channel 3 input port, a new bit synchronizer was required. The two prime candidate designs are described and analyzed. The selected design is a modification of one which utilizes a phase frequency detector to track the received data clock frequency and a mid-bit transition point sample detector to generate a bit timing error (phase error) signal to control the relative phase between the local clock and the local data stream. The model used to calculate the effects of cable attenuation and rise time degradation is discussed

    Open-loop frequency acquisition for suppressed-carrier biphase signals using one-pole arm filters

    Get PDF
    Open loop frequency acquisition performance is discussed for suppressed carrier binary phase shift keyed signals in terms of the probability of detecting the carrier frequency offset when the arms of the Costas loop detector have one pole filters. The approach, which does not require symbol timing, uses fast Fourier transforms (FFTs) to detect the carrier frequency offset. The detection probability, which depends on both the 3 dB arm filter bandwidth and the received symbol signal to noise ratio, is derived and is shown to be independent of symbol timing. It is shown that the performance of this technique is slightly better that other open loop acquisition techniques which use integrators in the arms and whose detection performance varies with symbol timing

    Crossflow vorticity sensor

    Get PDF
    A crossflow vorticity sensor for the detection of crossflow vorticity characteristics is described. The sensor is comprised of crossflow sensors which are noninvasively adhered to a swept wing laminar surface either singularly, in multi-element strips, in polar patterns, or in orthogonal patterns. These crossflow sensors are comprised of hot-film sensor elements which operate as a constant temperature anemometer circuit to detect heat transfer rate changes. Accordingly, crossflow vorticity characteristics are determined via cross-correlation. In addition, the crossflow sensors have a thickness which does not exceed a maximum value h in order to avoid contamination of downstream crossflow sensors

    Synchronizer for random binary data

    Get PDF
    Simplified binary-data transition detector, for synchronization of relatively noise-free signals, can be used with radio or cable data-control links. It permits reception of binary data in absence of clock signal or self-clocking coder

    Digital command system second-order subcarrier tracking performance

    Get PDF
    Equations to determine tracking performance for second order, phase locked loop used for subcarrier synchronization on digital command syste

    A unified acquisition system for acoustic data

    Get PDF
    A multichannel, acoustic AM carrier system was developed for a wide variety of applications, particularly for aircraft noise and sonic boom measurements. Each data acquisition channel consists of a condenser microphone, an acoustic signal converter, and a Zero Drive amplifier, along with peripheral supporting equipment. A control network insures continuous optimal tuning of the converter and permits remote calibration of the condenser microphone. With a 12.70-mm (1/2-in.) condenser microphone, the converter/Zero Drive amplifier combination has a frequency response from 0 Hz to 20 kHz (-3 db), a dynamic range exceeding 70 db, and a minimum noise floor of 50 db ref. 20 micro Pa) in the band 22.4 Hz to 22.4 kHz. The system requires no external impedance matching networks and is insensitive to cable length, at least up to 900 m (3,000 ft). System gain varies only + or - 1 db over the temperature range 4 to 54 C (40 to 130 F). Adapters are available to accommodate 23.77-mm (1-in.) and 6.35-mm (1/4-in.) microphones and to provide 30-db attenuation. A field test to obtain the acoustical time history of a helicopter flyover proved successful

    Solar powered hybrid sensor module program

    Get PDF
    Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed
    corecore