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This article discusses open-loop frequency-acquisition performance for sup-

pressed-carrier binary phase shift keyed signals in terms of tile probability of de-

tecting the carrier frequency offset when the arms of the Costas loop detector have

one-pole filters. The approach, which does not require symbol timing, uses fast

Fourier transforms (FFTs) to detect the carrier frequency offset. The detection

probability, which depends on both the 3-dB arm filter bandwidth and the received

symbol signal-to-noise ratio, is derived and is shown to be independent of symbol

timing. It is shown that the performance of this technique is slightly better than

other open-loop acquisition techniques which use integrators in the arms and whose

detection performance varies with symbol timing.

I. Introduction

Acquiring and tracking binary phase shift keyed

(BPSK) signals in the absence of a residual carrier is one

of the many functional requirements that must be met

by the Block V receiver [1], the Deep Space Network's

(DSN's) next-generation receiver presently under develop-

ment. The question of how to reduce the frequency error

Af between the received and predicted carrier frequency

to within the pull-in range of the Block V receiver's digi-

tal Costas loop (the loop used to demodulate BPSK sig-

nals) was initially addressed in [2]. The open-loop acqui-

sition techniques discussed in [2] estimate Af by perform-

ing fast Fourier transforms (FFTs) on the phase detector

output of Costas-type loops. Because the techniques in

[2] use integrate-and-dump arm filters, their performance

in terms of probability of detecting Af depends strongly

on symbol timing errors, that is, the receiver's estimate

of where a symbol epoch starts and ends. In particular,

the performance of these techniques, which worsens with

increasing symbol timing errors, motivates evaluating sys-

tem performance when the integrate-and-dump arm filters

are replaced by one-pole arm filters that are independent

of symbol timing. This article considers only the estima-

tion of the initial frequency error and does not treat the

acquisition of the phase and frequency after the frequency

error has been removed and the loop is closed (see Fig. 1).

Frequency and phase acquisition when the frequency er-

ror is less than one-half the closed-loop noise bandwidth

should occur within a few inverse closed-loop noise band-

widths [3,4].

Figure 1 is a functional block diagram of the open-loop

frequency-acquisition technique under consideration. The

arm filters are assumed to be one-pole filters. The error

signal z_(t) is sampled every T sec (T sec is the duration

of a symbol), accumulated, and fast-Fourier-transformed

to obtain the error signal spectrum. The probability of

detecting a tone in white Gaussian noise is well known [5]
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and can easily be computed as a function of the error-

signal SNI%. The results of [5] can be applied in a straight-
forward manner because, as shown in Appendix A, the

error sequence z(n) out of the integrate-and-dump filter
is composed of a sinusoid at 2Af Hz plus noise which is

approximately white and approximately Gaussian. The

absolute frequency difference 12All can be estimated (it
is assumed in the analysis to follow that AfT << 1) after

detecting the error signal in the spectrum at the output of

the Costas loop phase detector. Only the absolute value of

2Af can be estimated because taking the product of the
I and Q arms doubles the frequency error and removes

its sign. The sign ambiguity problem can be resolved by
offsetting the frequency so that the error Af always has a

known sign.

This article only considers tile case of detecting and

subsequently estimating the frequency error when the er-

ror signal is restricted to a single FFT bin. It also assumes
that the error signal is always present. Consequently, the

article does not address the question of how to choose a
threshold, which is the power level that the FFT bin with

the maximum power must exceed before a signal can be

declared to be present.

When a tone is known to be present and restricted to

a single bin, the maximum likelihood (ML) estimate of
the tone is to observe the FFT magnitude spectrum and

to select the frequency bin with the maximum power [5].

Note that, in practice, it is unlikely that the error signal

will be restricted to a single FFT bin.

In a typical deep-space operation, the Doppler shift is

accompanied by a Doppler rate which is removed by ramp-

ing the local oscillator phase based on Doppler rate pre-
dicts. If the Doppler rate cannot be predicted precisely,

the error signal will drift in frequency during the FFT

observation time, causing it to smear over multiple bins.
Clearly, the extent of the smearing depends on the size of

the Doppler rate error. On the other hand, if the Doppler

rate is known very accurately so that the signal does not

drift appreciably during the observation interval, the signal
may be present in multiple bins due to not sampling the

discrete-time Fourier transform at its peak (see Chapter 8

of [6]). Restricting the error signal to a single bin greatly

simplifies the analysis. Furthermore, it is appropriate be-

cause the intent is not to quantify absolute performance
but rather to compare performance between the lowpass

technique and the integration techniques of [2].

Although other models are not precluded, sampling of

zr(t) is modeled as a T-see integrate-and-dump filter, be-

cause doing so defines the signal-to-noise ratio (SNR) of

the error sequence z(n) in the same bandwidth as the al-
ternative acquisition techniques studied in [2]. Defining
SNRs in the same bandwidth is important when compar-

ing performance between different schemes. Since the arm

filters do not require symbol timing; and taking the prod-
uct of the I and Q arms prior to the integrate-and-dump

filter gives rise to a signal component (a tone at 2A f)

whose amplitude does not depend on symbol timing, the

performance of the one-pole technique is independent of

symbol timing errors. For convenience, the integrator ill

Fig. 1 is shown as synchronous with symbol transitions al-

though the analysis does not depend on this fact. In fact,
the value of integration time T r does not have to be equal

to T as long as AfT' << 1. However, as shown in Sec-

tion II, performance depends directly on the normalized

bandwidth R, defined as the ratio of the 3-dB arm filter
bandwidth to the data rate and the symbol SNR.

A mathematical model of the one-pole technique is de-

veloped in Section II. Its performance in terms of prob-
ability of detecting the frequency difference between the

received and predicted carrier frequency is derived in Sec-
tion III and discussed in Section IV. Conclusions are stated

in Section V.

Ih Mathematical Model

The received s_Jppressed-carrier BPSK signal, downcon-

verted to an appropriate intermediate frequency (IF), can
be modeled as

r(t) = v/-2-fid(t)sin(wit + 0i) + n(t) (1)

where P is the received power in watts, wi is the IF radian

frequency expressed in rad/sec, Oi is the signal phase in
rad, and d(t) is the transmitted data stream given by

+co

_(t) = _ _p(t- kT) (2)

where p(t) is the baseband non-return-to-zero (NRZ) pulse
limited to T see and dk represents the equally likely

4-1 binary symbols. The narrow-band noise process n(t)

can be expressed as

n(t) = v/-2n_(t)cos(wit + Oi) - v/-2n,(t)sin(wit -t-Oi)

(3)

where n_(t) and n,(t) are statistically independent station-
ary band-lhnited white Gaussian noise processes with one-

sided spectral density No watts/ttz and one-sided band-

width W Hz. The signal r(t) is demodulated by in-
phase and quadrature references, v/2sin(wot + 0o) and
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v_cos(wot + 0o), tuned to the predicted carrier frequency

and then filtered by a lowpass filter. Neglecting higher

frequency terms, the demodulated signals i(t) and q(t) in

Fig. 1 can be represented as (see Chapter 5 of [7] for an

example):

and

q(t) = Re [v/-'fid(t)_eJCe j_'°'] + R.

(4)

- ] (5)

where Re is the real part of a complex number, Aw =

2rrAf (Af _ fi --fo) is the radian frequency error to

be estimated, and ¢ -_ Oi - Oo is the phase error. Let

D(_o), N,(w), and No(w) be the Fourier transforms of the

baseband signals d(t), n,(t), and nc(t). Then the Fourier

representations of i(t) and q(t) are given by

z(.0 = T_ [D(._ - zX_)eJ*+ D*(-._- _X_)e-_*]

1

2j [Nc(_o - Aw)e j¢ - N*(-w - Aw)e -j¢]

l[N,(w - Aw)e j¢ + N:(-w - Aw)e -j¢]2

(6)

and

Q(w)= _v/T [D(w - Aw)e j¢ - D*(-w - Aw)e -j¢]

1 r

[N,(_ - A_)e j¢ - N:(-w - Aw)e -j¢]2j

(7)

where X* is the conjugate of the complex number X. Let

H(w) be the transfer function of the arm filters in Fig. 1.

Then, the filter outputs in the inphase and quadrature

arms are given as

1

2j L J

1 [57, (w - Aw)e j¢ + N,* (-w - A_)e -j¢]2

(s)

and

z,(,,,) = T

1 []Vc(_ - Aw)e j¢ +/_'c" (-_- Aw)e -j*]+3

1

2j

(9)

where D(,_), ._(,o), and ._,(_) are defined, as in [7],

D(w) = D(w)H(w + Aw) (10)

Nc(w) = N¢(w)H(w) (1])

fl,(w) = N,(w)H(w) (12)

Equations (8) and (9) represent the output of the arm

filters when the signal portion of the input has band-

pass spectra centered at Aw, and the input noise is band-

limited white noise with bandwidth W >> B + Af where

B Hz is the 3-dB bandwidth of H(w). Equations (8) and

(9) are applicable since the demodulated signals i(t) and
q(t) have signal spectra centered at Aw during acquisition.

The time-domain representations of Zi(co) and Zq(w) are
given by

zi(t)-= Re [x/-Pd(t)eJ_e jzx_'] + rli(t) (13)

and

Zq(t) = Re [v/-fid(t)_eJCeJa_tJ + rfq(t) (14)
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where

(15)

-- Re

- Re [ff,(t)_eJ¢e jA_'] (16)

and where d(t), ff,(t),.and de(t) are the inverse Fourier
transforms of D(w), N,(t), and /Vc_(t). It can be shown

from Eq. (10) that when Aw _ O, d(t) is in general com-

plex; when Aw = 0, it is real.

III. One-Pole Arm Filters

Assuming that the arm filters in Fig. 1 are one-pole
filters with 3-dB bandwidth B Hz, the transfer function

H(w) is given by

wB (17)
H(w) - jW +WB

where wB = 27rB is the 3-dB filter bandwidth in radians.

For such a filter, the error signal z'(t) = zi(t)zq(t) can be

computed as (see Appendix A):

z'(t) = A(P, AwT, R)sin(2Awt + 2¢ + _) + n'_ll(t )

(18)

The amplitude A given by Eq. (A-5) is a function of many

variables, including the normalized bandwidth R = BT,
which is the ratio of the 3-dB bandwidth of the one-pole

filter to the data rate R_ = lIT. It can be shown that A

does not change significantly with AfT when AfT << 1.
Since this article only considers the case AfT << 1, the

dependence of A on AwT is omitted in subsequent expres-

sions to allow a simpler notation. Since the interest here is

the magnitude of the error signal, the phase £ in Eq. (18)
is not relevant and consequently is not included here. The

effective noise Wel.f(t ) into the integrator is defined as

I A

n_ll(t ) = hr,(t) + n',,(t) + n_,(t) (19)

where the self-noise due to the signal times the signal prod-

uct, W,,(t), is given by Eq. (A-7); the noise due to the sig-

nal times the noise product, n',,,(t), is given by Eq. (A-8);

and the noise due to the noise times the noise product,

n_,(t), is given by Eq. (A-9). The signal-signal noise,

nr,_(l), which is a consequence of intersymbol interference

(ISI), has two terms. The first term has a continuous spec-
trum and zero mean, whereas the second term gives rise to

line spectra at harmonics (not including the fundamental

harmonic) of the symbol rate. The noise n_,_(t) is the low-

pass filtered signal response at time t (due to the present

as well as previously transmitted pulses) times the thermal
noise filtered by a lowpass filter. Lastly, the noise-noise

process n_n(t ) is the product of the filtered thermal noise
in the inphase arm and the quadrature-phase arm.

These noises are independent of each other since data
and noise are assumed to be independent. Consequently,

the average power of the effective noise is the sum of the

average power of each of the noise processes above. Ex-
pressions for average noise power are given by evaluat-

ing the autocorrelation functions of Eqs. (A-11) through

(A-13) at r = 0.

Referring to Fig. 1, the process z'(t) is integrated and

dumped to obtain the sequence z(n). Assuming that the
frequency error is much smaller than the data rate, that

is, AfT << 1, it is shown in Eq. (A-15) that the error

sequence z(n) can be represented as

z(n) = A(P, R) sin [2A._(nT + T/2) + 2¢ + _] + n_]l(n)

(2o)

where A(P, R) is as defined in Eq. (A-5) and the effective

noise sequence n_ll(n) is defined to be

._I_(_) g n.(n) + _,.(n) + n..(n) (21)

where the noises n,,(n), n,n(n), and nnn(n) are given by

Eqs. (A-16) through (A-18). The discrete autocorrelation
functions of these noises, assuming Aw = 0, are derived

in Appendix C and listed in Eqs. (A-19) through (A-21).

These functions are exact except for the autocorrelation

of ns_(n), which neglects the negligible second term in

Eq. (A-7). Since data and noise are independent, the ef-
2 wherefective noise power is given as o-el 1,

2 2 2 2

O'e] ] _ O's$ -_ O'an -3V O'nn (22)

and where Eqs. (A-19) through (A-21) for R,,(m),

R,n(m), and Rnn(m) yield

p2 ( e-2,,n + e2,-n)-1+
1 - e -4_rR

(23)
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e-2_n ( 1 17)+ ---4-- 1 + 2zrR 87r'YR2

16w2R2 e -4_rR _{._
(24)

grnn _ -- __ (25)

where 0.2 = No/2T. The signal-to-noise ratio of the error

sequence z(n), defined as signal power divided by the noise

power, is given by

SNR_(R) - A2(P' R)2 (26)
20"el f

where, after one uses Eq. (A-5) for A(P,R) and

Eq. (22) for o'ell, the term SNRz can be written in terms
of the received symbol SNR as

IC0(R)l2
SNR.(R) = 8C,,(R) + +

(27)

where SNR g PT/No, [Co(R)[ 2 is given by Eq. (A-6),

and where C_s(R) 2 2= a,,/P, C,,(R) = a_,,_/Pcr 2, and
crnn/a . The quantities C,,(R), C,n(R), andCn.(R) = 2 4

C,,n(R) depend on R because 2 2 and 2O'ss _ O"8. , O',n are func-
tions of R.

As expected, for a given SNR, SNR_ is primarily a

function of R. Equation (27) is exact except for C,,(R),
2 is an approximation:which is approximate because a,_

see derivation of Eq. (A-19). Although it is not proven,
2 given by Eq. (23) is believed to be a slight upperthe a,_

bound to the self-noise power for NRZ pulses. At symbol
SNRs below 0 dB, SNRz is a very accurate expression

for the true error sequence SNR. This is because in this

region the sum of C,n(R) and C,,_(R), which are scaled by

the inverse of SNR and are exact, dominates C,(R). For

SNRs above 0 dB, SNR, is believed to be a slight lower

bound to the true error sequence SNR, because in this case

C_ (R) dominates the other two terms in the denominator

of Eq. (27).

The objective of the analysis presented here is to enable

the designer to choose an arm filter bandwidth R for this

scheme that optimizes the probability of detecting a tone
in white Gaussian noise, that is, detecting the frequency

error between the incoming signal and the local oscillator

frequency so that the reference frequency can be moved
to the input frequency. Then the loop can be closed to

speed acquisition. This is accomplished by choosing an R

that optimizes the SNR of a tone in white Gaussian noise.

The error sequence SNR given by Eq. (27) represents the

SNR of a tone imbedded in noise n<f.t(n), which is neither

exactly white nor exactly Gaussian but can be assumed to
be both in practice. This is because the random variable

in each FFT bin, which results from summing N appropri-

ately weighted random variables at the FFT input, tends

toward a Gaussian random variable for large values of N.

The correlation coefficient p for a one-symbol separation
is less than 0.2 for symbol SNRs below 0 dB and R > 0.3.

When p _< 0.2, the assumption of independent samples
out of the integrate-and-dump is valid. Also, it is true

that nely(n) is essentially white when R > 0.5 for SNRs
above 0 dB. Thus, for any optimum R it is essentially true

that the integrate-and-dump output sequence is white and

so the results of [5] apply for the probability of correct de-

tection of the frequency error.

IV. Numerical Results and Discussion

A. SNR Degradation

Figure 2 depicts SNR degradation D versus normalized

bandwidth R. Degradation is defined as the reduced error

signal SNR given by Eq. (26) relative to the SNR of the

error signal of an "ideal" Costas loop. An ideal Costas

loop has integrate-and-dump arm filters with (magically)
perfect symbol timing instead of lowpass filters. In [2] it is

shown that the error signal SNR for an ideal Costas loop

detector SNRi is given by

SNR
SNR_ = (28)

4 + 2/SNR

where SNR _- PT/No is the received symbol signal-to-

noise ratio. In mathematical terms, the degradation is

given as

SN I_

D(R)- SNR,(R) (29)

Note that degradation defined in this way is a number

greater than one, which indicates an actual loss. Fig-

ures 2(a) through 2(e) show degradation D(R) versus a
relative 3-dB bandwidth R for various values of SNR. As
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expected, there is an optimum value for R (i.e., arm filter

bandwidth) that minimizes degradation and thus maxi-
mizes error signal SNR. Values of R greater or less than

this optimum value decrease error signal SNR because they

increase the noise power faster than the error signal power.

From Fig. 2 it is clear that lower symbol SNRs result in

smaller optimum R values.

The reference SNR, SNRi given by Eq. (28), is plot-

ted versus symbol SNR in Fig. 3. Figures 3 and 2 relate
received symbol SNR to the error signal SNR, SNRz.

B. Probability of Detection

Tile outlier probability (missed detection probability) q,
defined as the probability that the magnitude of any FFT

noise-only bin exceeds the magnitude of the signal-plus-

noise bin, is given by q = 1 - p, where p, the probability

of detecting the correct frequency offset, is given by (M =

N/2):

_0 cxa
p = 2M(SNR_)ye-M(SNR')(u_+l)

x Io[2My(SNRz)] [1- y2e-M(sgR')]Mdy

(30)

where N is the FFT size (and M is one-half the FFT

size) and I0() is the modified Bessel function of the first
kind. Thus, this probability for p is given by [5] except

that the factor of M - 1 is replaced by M in the last

bracketed term. If M were M - 1, the expressions in [5]

and Eq. (30) would be identical. The results in [5] are

slightly different from Eq. (30) because the results ill [5] are
derived for the more general complex FFT case. Figure 4

depicts q versus SNR where SNR corresponds to the signal-

to-noise ratio at the FFT input (i.e., SNRz). Figure 4

applies only when the noise prior to the FFT operation is
white and Gaussian. In the case described here, the error

signal noise component nell(n) is essentially white and
Gaussian. Since the N-point FFT has input samples at

the symbol rate, the frequency bin size is

1
AfBIN = -- (31)

NT

with (l/T) as the integrate-and-dump rate which is as-
sumed to be tile symbol rate in this analysis in order to

compare the results with [2]. Thus, when tile correct fre-
quency bin is detected, the actual frequency error, assum-

ing that the error signal is at the center of a bin, is reduced

to a maximum of AfBIN/2. As long as the maximum fre-

quency error is less than one-half of tile loop bandwidth

(that is, N is large enough), and

AIBI______ZN< B___£ (32)
2 - 2

or equivalently

AfBtN <_ BL (33)

where BL is the one-sided (closed-loop) bandwidth of the
Costas loop, the frequency and phase pull-in should be on

tile order of a few inverse BL'S.

The following example illustrates how to use the curves

presented in this section to compute the probability of cor-

rectly detecting the frequency error "seen" by the loop.

Suppose that the received symbol SNR is 0 dB. Then,

from Fig. 3, tile error signal SNR of an ideal Cost_s
loop is -11 dB. Assuming that R = 0.3, from Fig. 2(c),

D(0.3) = 0.3 dB and the error signal SNR SNR_ =

-11.3 dB. Finally, from Fig. 4, the probability of incor-

rectly detecting the actual frequency error for a 1024-point
FFT is 1.3 × 10 -6 .

V. Conclusion

This article has described a method of determining t.he

probability of correctly identifying the frequency error be-

tween the incoming suppressed-carrier signal and the fre-

quency of the Costas loop oscillator in order to aid in the

frequency acquisition of the suppressed-carrier signal. The
detector chosen for estimating the frequency error is the

error detector of the Costas loop, which is used for track-

ing the suppressed-carrier signal. The error signal is not

fed back to the loop filter and numerically controlled os-

cillator (NCO), but rather sent to an N-point FFT. The
FFT then estimates the frequency error, the Costas loop

is closed, and the loop NCO is adjusted in frequency to

reduce the initial frequency error to a very small value.

Knowing the symbol SNR allows the determination of

the SNRi and, from Figs. 2(a) through 2(e), tile additional

degradation D. The addition of these two terms yields
SNR,, which is tile abscissa entry on the plot of the prob-

ability of incorrectly detecting the actual frequency error

(Fig. 4). One minus this probability yields the probability

of correctly detecting the initial frequency error between

the received signal and the rest frequency of the Costa.s
loop NCO.
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This scheme compares favorably to the three methods
suggested in [2]. In particular, at SNRs that are _< 0 dB,

the staggered approach of [2] is best (minimum degrada-

tion). Comparing the average loss (averaged over timing

error) at SNRs _< 0 dB, the one-pole arm filter approach
is about 0.5 dB better. At SNRs _> 0 dB it is better by
more than 0.5 dB.

Whether tile one-pole filter approach or one of the

methods suggested in [2] will be used for the Block V re-

ceiver depends on hardware considerations, since the per-

formance of the best integrate-and-dump arm filter tech-
nique is nearly comparable to the one-pole arm filter ap-

proach and is easily switched to the optinmm tracking con-

figuration with integrate-and-dump arm filters.
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Fig. 1. Costas loop error detector to determine and correct the frequency error between the input and the

reference oscillators.
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Appendix A

Derivation of the Error Sequence z(n)

Figure 1 shows how lowpass filtered signals are collapsed into an error signal that can be Fourier transformed to
estimate the frequency error Af. The received signal r(t) downconverted to an appropriate IF is given by Eqs. (1)-(3).

The signal r(t) is first demodulated and then lowpass filtered to produce the functions zi(t) and zq(t), which are given

by Eqs. (13) and (14). Referring to Fig. 1, the error signal z'(t) is given by

z'(t) = zi(t)zq(t)

L7 J

(A-l)

where Re and Im are, respectively, the real and imaginary parts of a complex number, and where /i_(t) and 5q(t) are

given by Eqs. (15) and (16). The quantity _t2(t) is given _s

It can be shown from Eq. (10) that (]2(1), which is generally a complex quantity, reduces to a real quantity when

_ = 0. In this case, Eq. (A-l) reduces to p_us noise. This is the well-known form for the error signal

of a Cost_s loop [8], where the quantity d(t) is the filtered version of the baseband data d(t). When Aw ¢- 0, the function

(l'-'(t) for a one-pole filter is derived in Appendix B to be

d2(t)= £ Cn(R)eJ(2n_rt/T)+ k £ d_d_f(t-lT)_(t-kT) (A-3)
tl---- -- OO k _- -- C',O I =-- e,o

where fi(l) and C,,(R) are respectively given by Eqs. (B-8) and (B-9). Using Eq. (A-3) for (12(t) and Eq. (B-4) for d(t)

in Eq. (A-l), the error signal can be written as

z'(t) = A(P, R) sin(25ust + 28 + _) + n'_Ii(t) (A-4)

where

A(P, R) = PlCo(R)I (A-5)

and where, from Eq. (B-10), the squared magnitude of Co(R) can be computed to be

ICo(re)l= = [ ]{1(,X_oT)2 1-t-1 + 2_R

1 [ 1 ,(1

1 + \_,
+ e -47rR -- 2e -2,_n cos(Aa//'))

(A-6)
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Since the interest here is in the spectrum of the error signal, the phase _ in Eq. (A-4) is not relevant. Conseqnently, it

is not included here.

The effective noise n'_fl(t) in Eq. (A-4) is defined in Eq. (19), where

"',.(0 = Im I IP dkdi_(t - kT)_(t - IT)e i_(a_ot+¢) +Im
2" k=-- C<) I=-_ _ =-- c,o

l_k n#O

C,_ ( R)e j(2'_ t/T)eJ 2(Awt + 4_)

(A-7)

,,',.(0 = Re dk_(t -- kT)e j(a_t+¢) Kq(t)+ Re _ E dk_(t-- kT)le jt_''+e))-
k=-_ J

r_i(t) (A-8)

n_,_(1) = ffi(Qffq(t) (A-9)

where the binary symbols dk are +1 at random with probability one-half, t5(0 and Ca(R) are given by Eqs. (B-8) and

(B-9), and ffi(t) and ffq(t) are given by Eqs. (15) and (16). These noises are independent of one another since data
and noise are assumed to be independent. Consequently, the autocorrelation of the effective noise is the sum of the

autocorrelation of each of the noises. Mathematically,

where, from Appendix C,

R'q:(_) = R',,(_) + R',.(_) + R:.(_) (A-IO)

e-;_R + e2_R _(r) (A-11)
P_T -1 + --e_-:XTR ]R',(,) _ _ 2 1 -

It] < T

]rl _> T

(A-12)

R_.(v) = _rB e -4_BI_t (A-13)

The preceding equations describe the second-order statistics of the noise, which is usually fed back to close the loop
along with the signal component. Consequently, the equations can be used to compute the tracking variance of a Costas

loop with one-pole arm filters. The tracking variance was computed (in the absence of self-noise) by using the noise
statistics above. It was found to be the same as that computed in Chapter 5 of [7]. Although this is not a definitive test

of the accuracy of the equations above, it certainly enhances confidence in them.

As shown in Fig. 1, the error signal z'(t) is integrated and dumped every T sec to obtain the error sequence z(n).

That is,

1 /(n+l)T z'(t)dt (A-14)
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Assuming that the frequency error to be estimated, A f, is small relative to the data rate, Re = 1IT, allows one to write

=(,) as

z(n) = A( P, R) sin[2Aw(nT + T/2) + 2¢ + _] + n_s.t(n ) (A-15)

where the sinusoids in Eq. (A-4), which are approximately constant over T scc by assumption, can be removed outside the
integral after evaluating them at the midpoint of the integration window. The amplitude A(P, R) is given by Eq. (A-5),

the phase _ is not computed because it is not relevant, and the effective noise n<tj(n) is given by Eq. (21), where

1 /(,_+I)T n'.(t)dt (A-16)""(") = _ J_r

1 f(_+I)T n_,,_(t)dt (A-17)

1 f(,_+l)T n'n,_(t)dt (A-18)
"_"('_) = T J_r

where n'_(t), n'sn(t), and 'nnn(t ) are given by Eqs. (A-7) through (A-9). The discrete autocorrelation functions of the

noises above, which are computed in Appendix C, are

p2
n,,(,n) = _ (-

0,

e -21rR _afte2_rR'_ 2 e-4nR
1 + 2 J 1 -- e -4_H'

(A-19)

[ , e__._ _ _-_.R _-_.R 1 ]

Pa'_ [1 - 2-_" (_ - 8_--_)) -t- (1 -t- _ - _) - 4--(gT-_-D-+ s--(-ff7-_ ] ,

/'_,n(m)= po'2 1 (1 9 e -27rR -107rR)4-_ - s-;"fi) ÷ _ (1 + 2_7_fi+4__)5 - t (1 + s-7-fi)l (e-6,_.a - 2e -s'n + e

t:)°"2" \ - 64n:n: --] (2e -4_Rlrnl _ e-4'rR(Iml+l) __ e-4_rR(lml-1)) ,

rn =0

m=±l

m¢0,il

(A-20)

_(1 - , m = 0

a 4

Tg (e-4_R(l'q-1) + e-4"n0"q+l) - 2e-4"nl'_l) , m 7k 0

(A-21)

where ae = No/2T and R = BT is the ratio of the arm filter 3-dB bandwidth B to the data rate, 1/T. Note that,

as R ---* oo, R_s(m) ---+0 as expected. In this case, the data pulses approach the unfiltered case and consequently, the

self-noise power approaches zero. In the limit R _ 0% R,_(,n) _ Pa 2, which is the signal-noise power at the output of

the integrate-and-dump filter when the input is white noise with spectral level PNo/2 watts2/tIz. Finally, R,_,_(m) ---*oc

a_s R ---+oc, since in this case the input is white noise with spectral level N27rB/2, which becomes unbounded as R ---+oo,

R = BT, for fixed T.

204



Appendix B

Computing d2(t)in Eq. (A-l)

The data sequence d(t), which is given mathematically by Eq. (2), has its Fourier transform given by

oo

D(w) = Z dkP(w)e-J_T (B-l)
k=-oo

where the binary symbols d_ are -4-1 with equal probability and P(w) is the Fourier transform, denoted .T{}, of the

baseband NRZ pulse p(t). Applying Eq. (B-l) to Eq. (10) one obtains

b(_) = _ dk_(_)_ -ik_T (B-2)
k=-c_

where /5(w) is defined to be

[_(w) = P(w)H(w + Aw) (B-3)

As a result, d(t) = .T-l{/)(w)} is given as

oo

d(t) = _ dkp(t - kT) (B-4)
k= -oo

where fi(t) is the inverse Fourier transform of/5(w). From eq. (n-4), the term d2(t) in Eq. (A-l) can be written as

co _ co

d2(t) = Z P2(t - kT) + Z Z dkd, p(t - IT)f(t - kT)
k:=-_x:_ k=-oo I.._-oo

I#k

(B-5)

The first term in Eq. (B-5) is a periodic complex function with period T. Consequently, it can be represented by a
Fourier series:

__ _2(t- kT) = _ Cne j(2nrt/T) (B-6)

where the Fourier coefficients Cn are given by

1 2

Cn = -_'{f9 (t)}w=n(27t/T)
(B-7)

For a one-pole filter,/3(t) can be computed to be

wo (p(t) - e-(_B+J_'')'u(t) + e-('_'+'iA_)(t-T)u(t - T))_(t) - w. + jAw
(B-s)

where wB is the 3-dB filter bandwidth in radians, p(t) = u(t) - u(t - T), and u(t) is the unit step function. Applying

Eq. (B-8) to Eq. (B-7), the Fourier coefficients C,_ as a function of AwT and R = BT are computed to be
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( )2(1 nsinnTr 1 (1 .A,_T

;AwT (-1) _ 2rR (1 + j_) _'+-"j _ ,]
(B-V)

Note that for the special cases of Aw = 0 and Aw = (-nrc)/T, Eq. (B-9) reduces to Table 2 of [9]. Additionally, for

n = 0, Eq. (B-9) reduces to

( 1 Is( 1 1--e-(2"n+Ja_T)_Co(R)= -;_ 1 - 2_R T ' -'-':-zz_r
(B-IO)
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Computing

Appendix C

R'ss ('c), R'sn (J, R'nn (J and Rss (m), Rsn (m), Rnn (m)

When applicable, the derivations that follow assume that the frequency error Af = 0. This greatly simplifies tile
computation of the various autoeorrelation functions and is not expected to change appreciably the final result of the

main text. The reason for this is that all the significant noise components give rise to continuous spectra whose shapes

are not expected to change much with Af when Af << lIT. Furthermore, when computing R',,(r), the second term in

Eq. (A-7) is not included. This approximation is made because, except for the first harmonic which has a line component
at lIT 4- 2A f, the remaining harmonics give rise to line components far beyond the band of frequencies within which

the error signal is expected. Additionally, power in the first harlnonic which is at least 8 dB down from the component

at 2Af when AaaT < 0.1, is suppressed even further by the integrate-and-dump filter response preceding the FFT

operation.

I= R'ss (_) and Rss (m)

The self-noise n',s(t ) is given by Eq. (A-r). When Aw = 0, ifi(t) is real, and n's,(t ) reduces to

n'.(t) = 7
k=-oo 'TgY

(c-_)

where d,_ is 4-1 at random with probability one-half, and 0, which is independent of dn, is a uniform random variable in

the interval [0,2rr]. The filtered pulse/5(t) is given by Eq. (B-8). The autocorrelation function of n',, (t) is given by

p2

<,(_) = Eb'.(0<,(¢ + ,)] = --/-R(,) (c-2)

where, after noting that g[sin 2 ¢] = 1 R(r) can be defined as follows:7,

R(r) = E E dkdtdmdn_(t - kT)_(t - lT)_(t - rnr)/5(t - nT) (C-3)
=-_=--00 l=--oo m=--oo n ¢_

I#k n#m

The function above, which is in general difficult to compute because the filtered pulse/5(t) is not time limited, can be

approximated as follows. One begins by expressing R(r) as the inverse Fourier transform of its corresponding spectral

density.

F FR(T) = S(aJ)ejwr _ S(O)]im ej''T dw (C-4)
O0 _ a2 271"

From Chapter 5 of [6], the dc component of the spectral density in Eq. (C-4) is given by

oo

S(O) = 4T E R2d(IT) (C-5)
I=1

where

FRd(IT) = Sa(_)IH(w)I% -j_'Td---Tw (C-6)
e_ 27r
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where Sa(w) is the spectral density of the random NRZ data and IH(w)] 2 is the squared magnitude of the one-pole

filter with 3-dB bandwidth B Itz. Grouping the exponential in the above integral with IH(w)l'- and applying Parseval's

theorem gives the corresponding integral in the transformed domain. Namely,

,.<,.I:/2(1-b)_rBe-2_Bl'+Irldr - 27rR -1 -4- 2 (C-7)

where the parameter R = BT. Finally, R_=,(r) in Eq. (A-11) follows after back-substituting the last result.

The discrete autocorrelation function given by Eq. (A-19), which is the correlation function of the noise sequence

n_(n) given by Eq. (A-16), follows directly upon evaluating the next equation:

1 _oT[(m+I)T R:,([t_ - tl])dt2dtl (C-8)

where R'_,(r) is given by Eq. (A-11).

II. R'sn (I:) and Rsn (m)

The signal-noise process n'_,_(t) is given by Eq. (A-8). For Aw = 0,/3(1) is real and n',,_(t) reduces to

Since the data and noise processes are independent of each other, the autocorrelation of the signal noise product is the

product of the autocorrelation of the individual signal and noise processes. Itence,

R:.(r) = g[n',=(t)n',n(t + r)] = PR.(r)t_(v) (C-10)

where

]R,(r) = g E dkd,}(t - kT)}(t- IT)
k=-c_ l=-e_

(C-11)

_(_) = E[a_(t)_;(t + _)] = E[a_(t)_(t + _)] (C-12)

Tile functions R=(r) and /_(r) are the autocorrelation functions of signal and noise processes at the output of a one-

pole filter when the input signal process is random NRZ data, and the input noise process is white noise. Consequently,

writing R_ (r) as the inverse Fourier transform of its corresponding spectral density in terms of the input spectral density

times the squared magnitude of the one-pole filter, grouping the exponential with the squared magnitude of the filter

transfer function, and applying Parseval's theorem yields

/(R,(r) = 1 - --_-e-2"Bl"+_ldr '
T

(C-13)

where B IIz is the 3-dB bandwidth of tile one-pole filter. The noise correlation is well known to be

No n -27rBlr I (C-14)
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Finally, the signal-noise correlation given by Eq. (A-12) follows after substituting Eqs. (C-13) and (C-14) into Eq. (C-10).

The discrete autocorrelation function given by Eq. (A-20), which is the correlation function of the noise sequence

n,Jn), is obtained upon evaluating the next equation:

1 _oT/(m+I)T ' tR,.(m) = _ JmT Rsn(] 2 -tll)dt_dtl
(C-15)

Since the integrand above depends only on the absolute difference It2 - tl l, the double integral above carl be reduced to

the following simpler single integrals when m = 0, 1,-1. Namely,

T [ fT-T R'._(Ir[)(T - Irl)dr,

._o (C-16)
fa,,i: +l)TR''(lt2-t'l)dt2dtl = f_T R, (]rl)rdr,

m=0

m = 1, - 1

When lm] > 1, Eq. (C-15) reduces to the product of two single integrals in a straightforward manner.

III. R'nn (v) and Rnn (m)

The noise process n'n(t ) given by Eq. (A-9) is the product of the filtered inphase and quadraphase noise processes,

fii(t) and fiq(t). The autocorrelation of these noises, denoted by Rn(r), is given by Eq. (C-14). Furthermore, since
r_i(t) and /iv(t ) are independent with respect to each other, R,,_(r) = R_(r) and Eq. (A-13) follows. The discrete

autocorrelation Pm,_(m) is given upon evaluating the following equation:

T/(m+1)T= R',,,_(It2R_.(m) - t_l)dt2dtl
JmT

(c-17)

where, when m = 0, the double integral above can be transformed to the following simpler single integral:

T ffo R_n (It2 -ttl)dl2dtl = R_, (17-1) (r- ITI)d_- (C-18)
T

When m 7_ 0, Eq. (C-17) reduces to the product of two single integrals.
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