3,229 research outputs found

    Techniques for achieving magnetic cleanliness on deep-space missions

    Get PDF
    Techniques for obtaining magnetic cleanliness on deep space missions to allow interplanetary magnetic field mappin

    Pregnancy Rates to Artificial Insemination in Yearling Beef Heifers Is Not Influenced by Injectable Trace Mineral

    Get PDF
    Heifers that conceive early in their first breeding season have a long-term advantage in future reproductive success and production. Reproductive performance is more likely to be maximized if nutritional requirements are met, including those for trace minerals. Reproductive response to supplementation of trace minerals has been variable. Bioavailability of source, mineral antagonisms, intake, and long-term animal nutrient status may all contribute to that variability. A recent study found pre- and post-partum bolus injections of trace mineral increased pregnancy rate to AI in mature beef cows. The objective of this study was to determine the impact of an injectable trace mineral supplement on pregnancy rates to AI in developing replacement heifers

    The Size Distribution of Trans-Neptunian Bodies

    Get PDF
    [Condensed] We search 0.02 deg^2 for trans-Neptunian objects (TNOs) with m<=29.2 (diameter ~15 km) using the ACS on HST. Three new objects are discovered, roughly 25 times fewer than expected from extrapolation of the differential sky density Sigma(m) of brighter objects. The ACS and other recent TNO surveys show departures from a power law size distribution. Division of the TNO sample into ``classical Kuiper belt'' (CKB) and ``Excited'' samples reveals that Sigma(m) differs for the two populations at 96% confidence. A double power law adequately fits all data. Implications include: The total mass of the CKB is ~0.010 M_Earth, only a few times Pluto's mass, and is predominately in the form of ~100 km bodies. The mass of Excited objects is perhaps a few times larger. The Excited class has a shallower bright-end size distribution; the largest objects, including Pluto, comprise tens of percent of the total mass whereas the largest CKBOs are only ~2% of its mass. The predicted mass of the largest Excited body is close to the Pluto mass; the largest CKBO is ~60 times less massive. The deficit of small TNOs occurs for sizes subject to disruption by present-day collisions, suggesting extensive depletion by collisions. Both accretion and erosion appearing to have proceeded to more advanced stages in the Excited class than the CKB. The absence of distant TNOs implies that any distant (60 AU) population must have less than the CKB mass in the form of objects 40 km or larger. The CKB population is sparser than theoretical estimates of the required precursor population for short period comets, but the Excited population could be a viable precursor population.Comment: Revised version accepted to the Astronomical Journal. Numerical results are very slightly revised. Implications for the origins of short-period comets are substantially revised, and tedious material on statistical tests has been collected into a new Appendi

    Crystal structure of Li3Ga(BO3)2

    Get PDF
    The crystal structure of trilithium gallium bis(orthoborate), Li3Ga(BO3)2, is isotypic with Li3Al(BO3)2 in a triclinic cell in space-group type P1. The three Li and the unique Ga atom are coordinated by four O atoms each in tetrahedra, and the two B atoms are coordinated by three O atoms in orthoborate triangles. Chains with composition [Ga2(BO3)4] 6 extend along the a axis. The Li atoms interleave these chains in tetrahedral interstices. A comparison is made between the structure model of the title compound and that of a previously reported model for a compound with the same composition [Abdullaev & Mamedov (1972). Zh. Strukt. Khim. 13, 943–946.

    Assessment of the visibility impairment caused by the emissions from the proposed power plant at Boron, California

    Get PDF
    The current atmospheric conditions and visibility were modeled, and the effect of the power plant effluent was then added to determine its influence upon the prevailing visibility; the actual reduction in visibility being a function of meteorological conditions and observer-plume-target geometry. In the cases investigated, the perceptibility of a target was reduced by a minimum of 10 percent and a maximum of 100 percent. This significant visual impact would occur 40 days per year in the Edwards area with meteorological conditions such as to cause some visual impact 80 days per year

    Energy Spectrum of the Electrons Accelerated by a Reconnection Electric Field: Exponential or Power Law?

    Full text link
    The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test-particle simulations of electron acceleration in a reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that the DC electric field alone might not be able to reproduce the observed single or double power-law distributions.Comment: 18 pages, 6 figures, published in Ap

    Are Textures Natural?

    Get PDF
    We make the simple observation that, because of global symmetry violating higher-dimension operators expected to be induced by Planck-scale physics, textures are generically much too short-lived to be of use for large-scale structure formation.Comment: 9p

    The Kuiper Belt Luminosity Function from m(R)=21 to 26

    Get PDF
    We have performed an ecliptic imaging survey of the Kuiper belt with our deepest and widest field achieving a limiting flux of m(g') = 26.4, with a sky coverage of 3.0 square-degrees. This is the largest coverage of any other Kuiper belt survey to this depth. We detect 72 objects, two of which have been previously observed. We have improved the Bayesian maximum likelihood fitting technique presented in Gladman et al. (1998) to account for calibration and sky density variations and have used this to determine the luminosity function of the Kuiper belt. Combining our detections with previous surveys, we find the luminosity function is well represented by a single power-law with slope alpha = 0.65 +/- 0.05 and an on ecliptic sky density of 1 object per square-degree brighter than m(R)=23.42 +/- 0.13. Assuming constant albedos, this slope suggests a differential size-distribution slope of 4.25 +/- 0.25, which is steeper than the Dohnanyi slope of 3.5 expected if the belt is in a state of collisional equilibrium. We find no evidence for a roll-over or knee in the luminosity function and reject such models brightward of m(R) ~ 24.6.Comment: 50 Pages, 8 Figure

    Precision spectroscopy and density-dependent frequency shifts in ultracold Sr

    Full text link
    By varying the density of an ultracold 88^{88}Sr sample from 10910^9 cm−3^{-3} to >1012> 10^{12} cm−3^{-3}, we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0^1S_0 - 3P1^3P_1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88^{88}Sr 1S0−3P1^1S_0 - ^3P_1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is (434829121312334±20stat±33sys434 829 121 312 334 \pm 20_{stat} \pm 33_{sys}) Hz.Comment: 4 pages, 4 figures, 1 table. submitte
    • …
    corecore