299 research outputs found

    Removing the Bar of Exclusionary Zoning to a Decent Home

    Get PDF

    A modern-day requirement for co-ordinated covert action

    Get PDF
    Covert action can be an important weapon in a state’s arsenal. It is, however, inherently controversial and risky. Rory Cormac, Michael S Goodman and Tom Holman argue that when considering covert action, Whitehall should look to lessons from the recent past. The UK has long used covert action, and how best to manage and co-ordinate such sensitive activity was for many decades a key preoccupation of its policy-makers and politicians. Given the secrecy involved, these lessons, and the machinery created, have been lost to history. Yet with covert action seemingly now back on the agenda, previous experience and hard-learnt lessons have assumed renewed importance

    Inflation at the Electroweak Scale

    Full text link
    We present a simple model for slow-rollover inflation where the vacuum energy that drives inflation is of the order of GF2G_F^{-2}; unlike most models, the conversion of vacuum energy to radiation (``reheating'') is moderately efficient. The scalar field responsible for inflation is a standard-model singlet, develops a vacuum expectation value of the order of 4\times 10^6\GeV, has a mass of order 1\GeV, and can play a role in electroweak phenomena.Comment: 14 page

    Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared

    Full text link
    We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigma(M_J) = 0.17 +/- 0.03, sigma(M_H) = 0.11 +/- 0.03, and sigma(M_Ks) = 0.19 +/- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SN at cz > 2000 km/s is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light curve inference tests the sensitivity of the model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.Comment: 24 pages, 15 figures, 4 tables. Accepted for publication in ApJ. Corrected typo, added references, minor edit

    CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    Get PDF
    © 2018 Author(s). As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications

    Sputtered aluminum oxide and p+ amorphous silicon back-contact for improved hole extraction in polycrystalline CdSexTe1-x and CdTe photovoltaics

    Get PDF
    A thin layer of Al2O3 at the back of CdSexTe1-x/CdTe devices is shown to passivate the back interface and drastically improve surface recombination lifetimes and photoluminescent response. Despite this, such devices do not show an improvement in open-circuit voltage (VOC.) Adding a p + amorphous silicon layer behind the Al2O3 bends the conduction band upward, reducing the barrier to hole extraction and improving collection. Further optimization of the Al2O3, amorphous silicon (a-Si), and indiumdoped tin oxide (ITO) layers, as well as their interaction with the CdCl2 passivation process, are necessary to translate these electrooptical improvements into gains in voltag

    Large Synoptic Survey Telescope Solar System Science Roadmap

    Get PDF
    The Large Synoptic Survey Telescope (LSST) is uniquely equipped to search for Solar System bodies due to its unprecedented combination of depth and wide field coverage. Over a ten-year period starting in 2022, LSST will generate the largest catalog of Solar System objects to date. The main goal of the LSST Solar System Science Collaboration (SSSC) is to facilitate the efforts of the planetary community to study the planets and small body populations residing within our Solar System using LSST data. To prepare for future survey cadence decisions and ensure that interesting and novel Solar System science is achievable with LSST, the SSSC has identified and prioritized key Solar System research areas for investigation with LSST in this roadmap. The ranked science priorities highlighted in this living document will inform LSST survey cadence decisions and aid in identifying software tools and pipelines needed to be developed by the planetary community as added value products and resources before the planned start of LSST science operations.Comment: 7 pages; Feedback welcom
    corecore