204 research outputs found

    Naval Force Planning Cases: Organizing Our Thoughts and Weighing Alternatives

    Get PDF
    At the highest level, a nation\u27s grand strategy influences its choice of naval forces. So, in turn, do military and maritime strategies. Each supports the higher order strategy while providing further insight into specific forces required

    Strategy as a Guide to Force Planning

    Get PDF
    Is there a method to Pentagon madness? That is the question so often asked about defense planning by Congressional and journalistic critics. Between the extremes of throwing money at the problem and indiscriminate cuts, is there a better approach to force planning

    Set and Drift

    Get PDF

    The Art of Strategy and Force Planning

    Get PDF
    An ancient cliché holds that strategy is an art, not a science

    Clear Strategies for a Murky World: Constructive Involvement and Selective Response

    Get PDF
    President Clinton has declared strong and simple strategic objectives: America must continue to lead the world we did so much to make.... Together with our friends and allies we will work to shape change lest it engulf us. When our vital interests or the will and the conscience of the international community is defied, we will act, with peaceful diplomacy when­ ever possible, with force when necessary. 1 But what are the implications of these goals? What kind of change do we seek and why? What are the strategies that will guide policy makers and force planners in this turbulent era

    The Military Balance 1985-1986

    Get PDF

    The use of selected reaction monitoring in quantitative proteomics

    Get PDF
    Selected reaction monitoring (SRM) has a long history of use in the area of quantitative MS. In recent years, the approach has seen increased application to quantitative proteomics, facilitating multiplexed relative and absolute quantification studies in a variety of organisms. This article discusses SRM, after introducing the context of quantitative proteomics (specifically primarily absolute quantification) where it finds most application, and considers topics such as the theory and advantages of SRM, the selection of peptide surrogates for protein quantification, the design of optimal SRM co-ordinates and the handling of SRM data. A number of published studies are also discussed to demonstrate the impact that SRM has had on the field of quantitative proteomics. </jats:p

    Long-Term Stability of Planets in Binary Systems

    Full text link
    A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the system's center of mass, are examined. From the results, empirical expressions are developed for both 1) the largest orbit around each of the stars, and 2) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (10^4 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio mu and the binary eccentricity e, are determined for the range 0.0 <= e <= 0.7-0.8 and 0.1 <= mu <= 0.9 in both regions, and can be used to guide searches for planets in binary systems. After considering the case of a single low-mass planet in binary systems, the stability of a mutually-interacting system of planets orbiting one star of a binary system is examined, though in less detail.Comment: 19 pages, 5 figures, 7 tables, accepted by the Astronomical Journa

    Physical soil quality indicators for monitoring British soils

    Get PDF
    The condition or quality of soils determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of its capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs were tested for robustness, spatial and temporal variability and expected rate of change using statistical analysis and modelling. Six SQIs were prioritised; packing density, soil water retention characteristics, aggregate stability, rate of erosion, depth of soil and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programs

    Dynamic response of land use and river nutrient concentration to long-term climatic changes

    Get PDF
    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames
    • …
    corecore