12,748 research outputs found
Two-component {CH} system: Inverse Scattering, Peakons and Geometry
An inverse scattering transform method corresponding to a Riemann-Hilbert
problem is formulated for CH2, the two-component generalization of the
Camassa-Holm (CH) equation. As an illustration of the method, the multi -
soliton solutions corresponding to the reflectionless potentials are
constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment
A study of human performance in a rotating environment
Consideration is given to the lack of sufficient data relative to the response of man to the attendant oculovestibular stimulations induced by multi-directional movement of an individual within the rotating environment to provide the required design criteria. This was done to determine the overall impact of artificial gravity simulations on potential design configurations and crew operational procedures. Gross locomotion and fine motor performance were evaluated. Results indicate that crew orientation, rotational rates, vehicle design configurations, and operational procedures may be used to reduce the severity of the adverse effects of the Coriolis and cross-coupled angular accelerations acting on masses moving within a rotating environment. Results further indicate that crew selection, motivation, and short-term exposures to the rotating environment may be important considerations for future crew indoctrination and training programs
An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow
In this paper we consider the Hamiltonian formulation of the equations of
incompressible ideal fluid flow from the point of view of optimal control
theory. The equations are compared to the finite symmetric rigid body equations
analyzed earlier by the authors. We discuss various aspects of the Hamiltonian
structure of the Euler equations and show in particular that the optimal
control approach leads to a standard formulation of the Euler equations -- the
so-called impulse equations in their Lagrangian form. We discuss various other
aspects of the Euler equations from a pedagogical point of view. We show that
the Hamiltonian in the maximum principle is given by the pairing of the
Eulerian impulse density with the velocity. We provide a comparative discussion
of the flow equations in their Eulerian and Lagrangian form and describe how
these forms occur naturally in the context of optimal control. We demonstrate
that the extremal equations corresponding to the optimal control problem for
the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE
Conference on Decision and Contro
Hierarchy of integrable Hamiltonians describing of nonlinear n-wave interaction
In the paper we construct an hierarchy of integrable Hamiltonian systems
which describe the variation of n-wave envelopes in nonlinear dielectric
medium. The exact solutions for some special Hamiltonians are given in terms of
elliptic functions of the first kind.Comment: 17 page
Searching protein structure databases with DaliLite v.3
The Red Queen said, ‘It takes all the running you can do, to keep in the same place.’ Lewis Carro
The optimal P3M algorithm for computing electrostatic energies in periodic systems
We optimize Hockney and Eastwood's Particle-Particle Particle-Mesh (P3M)
algorithm to achieve maximal accuracy in the electrostatic energies (instead of
forces) in 3D periodic charged systems. To this end we construct an optimal
influence function that minimizes the RMS errors in the energies. As a
by-product we derive a new real-space cut-off correction term, give a
transparent derivation of the systematic errors in terms of Madelung energies,
and provide an accurate analytical estimate for the RMS error of the energies.
This error estimate is a useful indicator of the accuracy of the computed
energies, and allows an easy and precise determination of the optimal values of
the various parameters in the algorithm (Ewald splitting parameter, mesh size
and charge assignment order).Comment: 31 pages, 3 figure
Kinetic and ion pairing contributions in the dielectric spectra of electrolyte aqueous solutions
Understanding dielectric spectra can reveal important information about the
dynamics of solvents and solutes from the dipolar relaxation times down to
electronic ones. In the late 1970s, Hubbard and Onsager predicted that adding
salt ions to a polar solution would result in a reduced dielectric permittivity
that arises from the unexpected tendency of solvent dipoles to align opposite
to the applied field. So far, this effect has escaped an experimental
verification, mainly because of the concomitant appearance of dielectric
saturation from which the Hubbard-Onsager decrement cannot be easily separated.
Here we develop a novel non-equilibrium molecular dynamics simulation approach
to determine this decrement accurately for the first time. Using a
thermodynamic consistent all-atom force field we show that for an aqueous
solution containing sodium chloride around 4.8 Mol/l, this effect accounts for
12\% of the total dielectric permittivity. The dielectric decrement can be
strikingly different if a less accurate force field for the ions is used. Using
the widespread GROMOS parameters, we observe in fact an {\it increment} of the
dielectric permittivity rather than a decrement. We can show that this
increment is caused by ion pairing, introduced by a too low dispersion force,
and clarify the microscopic connection between long-living ion pairs and the
appearance of specific features in the dielectric spectrum of the solution
An integrable shallow water equation with peaked solitons
We derive a new completely integrable dispersive shallow water equation that
is biHamiltonian and thus possesses an infinite number of conservation laws in
involution. The equation is obtained by using an asymptotic expansion directly
in the Hamiltonian for Euler's equations in the shallow water regime. The
soliton solution for this equation has a limiting form that has a discontinuity
in the first derivative at its peak.Comment: LaTeX file. Figure available from authors upon reques
Z_2-Regge versus Standard Regge Calculus in two dimensions
We consider two versions of quantum Regge calculus. The Standard Regge
Calculus where the quadratic link lengths of the simplicial manifold vary
continuously and the Z_2-Regge Model where they are restricted to two possible
values. The goal is to determine whether the computationally more easily
accessible Z_2 model still retains the universal characteristics of standard
Regge theory in two dimensions. In order to compare observables such as average
curvature or Liouville field susceptibility, we use in both models the same
functional integration measure, which is chosen to render the Z_2-Regge Model
particularly simple. Expectation values are computed numerically and agree
qualitatively for positive bare couplings. The phase transition within the
Z_2-Regge Model is analyzed by mean-field theory.Comment: 21 pages, 16 ps-figures, to be published in Phys. Rev.
An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion
We study a class of 1+1 quadratically nonlinear water wave equations that
combines the linear dispersion of the Korteweg-deVries (KdV) equation with the
nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation, yet still
preserves integrability via the inverse scattering transform (IST) method.
This IST-integrable class of equations contains both the KdV equation and the
CH equation as limiting cases. It arises as the compatibility condition for a
second order isospectral eigenvalue problem and a first order equation for the
evolution of its eigenfunctions. This integrable equation is shown to be a
shallow water wave equation derived by asymptotic expansion at one order higher
approximation than KdV. We compare its traveling wave solutions to KdV
solitons.Comment: 4 pages, no figure
- …