37 research outputs found

    The effect of spatial resolution on optical and near-IR studies of stellar clusters: Implications for the origin of the red excess

    Full text link
    Recent ground based near-IR studies of stellar clusters in nearby galaxies have suggested that young clusters remain embedded for 7-10Myr in their progenitor molecular cloud, in conflict with optical based studies which find that clusters are exposed after 1-3Myr. Here, we investigate the role that spatial resolution plays in this apparent conflict. We use a recent catalogue of young (50005000~\msun) clusters in the nearby spiral galaxy, M83, along with Hubble Space Telescope (HST) imaging in the optical and near-IR, and ground based near-IR imaging, to see how the colours (and hence estimated properties such as age and extinction) are affected by the aperture size employed, in order to simulate studies of differing resolution. We find that the near-IR is heavily affected by the resolution, and when aperture sizes >40>40~pc are used, all young/blue clusters move red-ward in colour space, which results in their appearance as heavily extincted clusters. However, this is due to contamination from nearby sources and nebular emission, and is not an extinction effect. Optical colours are much less affected by resolution. Due to the larger affect of contamination in the near-IR, we find that, in some cases, clusters will appear to show near-IR excess when large (>20>20~pc) apertures are used. Our results explain why few young (<6<6~Myr), low extinction (\av < 1~mag) clusters have been found in recent ground based near-IR studies of cluster populations, while many such clusters have been found in higher resolution HST based studies. Additionally, resolution effects appear to (at least partially) explain the origin of the near-IR excess that has been found in a number of extragalactic YMCs.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    Properties of the cluster population of NGC 1566 and their implications

    Get PDF
    We present results of a photometric study into the cluster population of NGC 1566, a nearby grand design spiral galaxy, sampled out to a Galactocentric radius of ≈5.5\approx 5.5 kpc. The shape of the mass-limited age distribution shows negligible variation with radial distance from the centre of the galaxy, and demonstrates three separate sections, with a steep beginning, flat middle and steep end. The luminosity function can be approximated by a power law at lower luminosities with evidence of a truncation at higher luminosity. The power law section of the luminosity function of the galaxy is best fitted by an index ≈−2\approx -2, in agreement with other studies, and is found to agree with a model luminosity function, which uses an underlying Schechter mass function. The recovered power law slope of the mass distribution shows a slight steepening as a function of galactocentric distance, but this is within error estimates. It also displays a possible truncation at the high mass end. Additionally, the cluster formation efficiency (Γ\Gamma) and the specific U-band luminosity of clusters (TL(U)T_L(U)) are calculated for NGC 1566 and are consistent with values for similar galaxies. A difference in NGC 1566, however, is that the fairly high star formation rate is in contrast with a low ΣSFR\Sigma_{SFR} and Γ\Gamma, indicating that Γ\Gamma can only be said to depend strongly on ΣSFR\Sigma_{SFR}, not the star formation rate

    Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations

    Get PDF
    We present the results of a spectroscopic study of the intermediate age (approximately 6.5 Gyr) massive cluster Kron 3 in the Small Magellanic Cloud. We measure CN and CH band strengths (at 3839 and 4300 Angstroms respectively) using VLT FORS2 spectra of 16 cluster members and find a sub-population of 5 stars enriched in nitrogen. We conclude that this is evidence for multiple populations in Kron 3, the fourth intermediate age cluster, after Lindsay 1, NGC 416 and NGC 339 (ages 6-8 Gyr), to display this phenomenon originally thought to be a unique characteristic of old globular clusters. At 6.5 Gyr this is one of the youngest clusters with multiple populations, indicating that the mechanism responsible for their onset must operate until a redshift of at least 0.75, much later than the peak of globular cluster formation at redshift ~3

    Evidence for multiple populations in intermediate age cluster Lindsay 1 in the SMC

    Get PDF
    Lindsay 1 is an intermediate age (≈8 Gyr) massive cluster in the Small Magellanic Cloud (SMC). Using VLT FORS2 spectra of 16 probable cluster members on the lower RGB of the cluster, we measure CN and CH band strengths (at ≃ 3883 and 4300 Å respectively), along with carbon and nitrogen abundances and find that a sub-population of stars has significant nitrogen enrichment. A lack of spread in carbon abundances excludes evolutionary mixing as the source of this enrichment, so we conclude that this is evidence of multiple populations. Therefore, L1 is the youngest cluster to show such variations, implying that the process triggering the onset of multiple populations must operate until at least redshift ∼1

    Evidence for multiple populations in the intermediate age cluster Lindsay 1 in the SMC

    Get PDF
    Lindsay 1 is an intermediate age (approx 8 Gyr) massive cluster in the Small Magellanic Cloud (SMC). Using VLT FORS2 spectra of 16 probable cluster members on the lower RGB of the cluster, we measure CN and CH band strengths (at 3883 and 4300 Angstroms respectively), along with carbon and nitrogen abundances and find that a sub-population of stars has significant nitrogen enrichment. A lack of spread in carbon abundances excludes evolutionary mixing as the source of this enrichment, so we conclude that this is evidence of multiple populations. Therefore, L1 is the youngest cluster to show such variations, implying that the process triggering the onset of multiple populations must operate until at least redshift ~1

    The effect of spatial resolution on optical and near-IR studies of stellar clusters: implications for the origin of the red excess

    Get PDF
    Recent ground-based near-IR (NIR) studies of stellar clusters in nearby galaxies have suggested that young clusters remain embedded for 7–10 Myr in their progenitor molecular cloud, in conflict with optical-based studies which find that clusters are exposed after 1–3 Myr. Here, we investigate the role that spatial resolution plays in this apparent conflict. We use a recent catalogue of young (5000 M⊙) clusters in the nearby spiral galaxy, M83, along with Hubble Space Telescope (HST) imaging in the optical and NIR, and ground-based NIR imaging, to see how the colours (and hence estimated properties such as age and extinction) are affected by the aperture size employed, in order to simulate studies of differing resolution. We find that the NIR is heavily affected by the resolution, and when aperture sizes >40 pc are used, all young/blue clusters move redwards in colour space, which results in their appearance as heavily extincted clusters. However, this is due to contamination from nearby sources and nebular emission, and is not an extinction effect. Optical colours are much less affected by resolution. Due to the larger effect of contamination in the NIR, we find that, in some cases, clusters will appear to show NIR excess when large (>20 pc) apertures are used. Our results explain why few young (<6 Myr), low-extinction (A V <1 mag) clusters have been found in recent ground-based NIR studies of cluster populations, while many such clusters have been found in higher resolution HST-based studies. Additionally, resolution effects appear to (at least partially) explain the origin of the NIR excess that has been found in a number of extragalactic young massive clusters

    Constraining globular cluster formation through studies of young massive clusters - V. ALMA observations of clusters in the Antennae

    Get PDF
    Some formation scenarios that have been put forward to explain multiple populations within Globular Clusters (GCs) require that the young massive cluster have large reservoirs of cold gas within them, which is necessary to form future generations of stars. In this paper we use deep observations taken with Atacama Large Millimeter/sub-millimeter Array (ALMA) to assess the amount of molecular gas within 3 young (50-200 Myr) massive (~10^6 Msun) clusters in the Antennae galaxies. No significant CO(3--2) emission was found associated with any of the three clusters. We place upper limits for the molecular gas within these clusters of ~1x10^5 Msun (or <9 % of the current stellar mass). We briefly review different scenarios that propose multiple episodes of star formation and discuss some of their assumptions and implications. Our results are in tension with the predictions of GC formation scenarios that expect large reservoirs of cool gas within young massive clusters at these ages

    The Search for Multiple Populations in Magellanic Cloud Clusters II: The Detection of Multiple Populations in Three Intermediate-Age SMC Clusters

    Get PDF
    This is the second paper in our series about the search for multiple populations in Magellanic Cloud star clusters using the Hubble Space Telescope. Here we report the detection of multiple stellar populations in the colour-magnitude diagrams of the intermediate-age clusters Lindsay 1, NGC 416 and NGC 339. With ages between 6.0 and 7.5 Gyr, these clusters are the youngest ones in which chemical abundance spreads have been detected so far. This confirms that the appearance of multiple populations is not restricted to only ancient globular clusters, but may also be a common feature in clusters as young as 6 Gyr. Our results are in agreement with a recent spectroscopic study of Lindsay 1. We found that the fraction of enriched stars in NGC 416 is ~45% whereas it is ~25% in NGC 339 and ~36% in Lindsay 1. Similar to NGC 121, these fractions are lower than the average value for globular clusters in the Milky Way

    The Search for Multiple Populations in Magellanic Cloud Clusters II: The Detection of Multiple Populations in Three Intermediate-Age SMC Clusters

    Get PDF
    This is the second paper in our series about the search for multiple populations in Magellanic Cloud star clusters using the Hubble Space Telescope. Here we report the detection of multiple stellar populations in the colour-magnitude diagrams of the intermediate-age clusters Lindsay 1, NGC 416 and NGC 339. With ages between 6.0 and 7.5 Gyr, these clusters are the youngest ones in which chemical abundance spreads have been detected so far. This confirms that the appearance of multiple populations is not restricted to only ancient globular clusters, but may also be a common feature in clusters as young as 6 Gyr. Our results are in agreement with a recent spectroscopic study of Lindsay 1. We found that the fraction of enriched stars in NGC 416 is ~45% whereas it is ~25% in NGC 339 and ~36% in Lindsay 1. Similar to NGC 121, these fractions are lower than the average value for globular clusters in the Milky Way
    corecore