84 research outputs found

    The formation and evolution of massive clusters in extragalactic environments

    Get PDF
    There are a host of open questions in the study of massive clusters relating to cluster formation and evolution. Understanding these processes can be useful in studying their host galaxies and how they have evolved. The formation of globular clusters is also a well debated topic, which is yet undecided and requires many more observations to constrain the theories. Here I present the work carried out during my PhD, with the goal of furthering our understanding of cluster formation and evolution using observations of massive clusters of various ages. Firstly, HST WFC3 data of the well studied face-on spiral galaxy M 83, combined with an existing cluster catalogue, was used to investigate the timescale by which young massive clusters become free of gas. This has implications for globular cluster formation theories, in addition to the survival of clusters at young ages. The presence of Wolf-Rayet stars was also investigated within the clusters and the unreliability of Hα photometry in young cluster age and mass fitting was explored. Secondly, the cluster population of NGC 1566 was used to investigate the cluster mass function and disruption in the galaxy. Whether the mass function has a truncation in the form of a Schechter function and whether disruption is environmentally and mass dependent are two questions that still persist in this area. For NGC 1566 I find that the mass function does show a truncation and using the observed luminosity function in conjunction with models, that an underlying Schechter mass function fits the observations well. Additionally the galaxy shows evidence for environmentally dependent disruption as the average timescale for the disruption of a 10⁎ msun cluster varies with galactocentric radius. A difference in age in radial bins is also indicated in a colour change found with U-B between consecutive bins, that shows more young clusters towards the centre of the galaxy and fewer at the edge. Finally, low resolution FORS2 spectra of two intermediate age massive clusters in the SMC (Lindsay 1 and Kron 3, 6-8 Gyr old) were used to look for the signatures of multiple populations (MPs), as observed in ancient GCs. The main driver behind this project was to investigate the possibility that YMCs can be considered young GCs and used to constrain their formation, and also to explore the role cluster age has in determining the presence of MPs. A subpopulation of N-enriched stars was found in each cluster, consistent with the presence of MPs. This indicates that MPs are not limited to ancient GCs and their formation mechanism must be operating until a redshift of at least 0.65, much later than the peak of GC formation at ≈ 3. It hints at a common formation mechanism between massive clusters of varying ages, including GCs, and suggests that YMCs can be used to constrain GC formation. The publications from these projects have contributed mainly to constraining GC formation theories and provides evidence for commonality in the formation mechanism used to produce GCs and YMCs alike

    The effect of spatial resolution on optical and near-IR studies of stellar clusters: Implications for the origin of the red excess

    Full text link
    Recent ground based near-IR studies of stellar clusters in nearby galaxies have suggested that young clusters remain embedded for 7-10Myr in their progenitor molecular cloud, in conflict with optical based studies which find that clusters are exposed after 1-3Myr. Here, we investigate the role that spatial resolution plays in this apparent conflict. We use a recent catalogue of young (50005000~\msun) clusters in the nearby spiral galaxy, M83, along with Hubble Space Telescope (HST) imaging in the optical and near-IR, and ground based near-IR imaging, to see how the colours (and hence estimated properties such as age and extinction) are affected by the aperture size employed, in order to simulate studies of differing resolution. We find that the near-IR is heavily affected by the resolution, and when aperture sizes >40>40~pc are used, all young/blue clusters move red-ward in colour space, which results in their appearance as heavily extincted clusters. However, this is due to contamination from nearby sources and nebular emission, and is not an extinction effect. Optical colours are much less affected by resolution. Due to the larger affect of contamination in the near-IR, we find that, in some cases, clusters will appear to show near-IR excess when large (>20>20~pc) apertures are used. Our results explain why few young (<6<6~Myr), low extinction (\av < 1~mag) clusters have been found in recent ground based near-IR studies of cluster populations, while many such clusters have been found in higher resolution HST based studies. Additionally, resolution effects appear to (at least partially) explain the origin of the near-IR excess that has been found in a number of extragalactic YMCs.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    Sizes and Shapes of Young Star Cluster Light Profiles in M83

    Get PDF
    We measure the radii and two-dimensional light profiles of a large sample of young, massive star clusters in M83 using archival HST/WFC3 imaging of seven adjacent fields. We use GALFIT to fit the two-dimensional light profiles of the clusters, from which we find effective (half-light) radii, core radii, and slopes of the power-law (EFF) profile (η\eta). We find lognormal distributions of effective radius and core radius, with medians of ≈\approx2.5 pc and ≈\approx1.3 pc, respectively. Our results provide strong evidence for a characteristic size of young, massive clusters. The average effective radius and core radius increase somewhat with cluster age. Little to no change in effective radius is observed with increasing galactocentric distance, except perhaps for clusters younger than 100 Myr. We find a shallow correlation between effective radius and mass for the full cluster sample, but a stronger correlation is present for clusters 200-300 Myr in age. Finally, the majority of the clusters are best fit by an EFF model with index η≀3.0\eta\leq3.0. There is no strong evidence for change in η\eta with cluster age, mass, or galactocentric distance. Our results suggest that clusters emerge from early evolution with similar radii and are not strongly affected by the tidal field of M83. Mass loss due to stellar evolution and/or GMC interactions appear to dominate cluster expansion in the age range we study.Comment: 34 pages, 11 figures, 3 tables, accepted by MNRAS. Machine-readable table attached (full version of Table 3). To obtain, download the source file from the "Other formats" link abov

    Making a difference to employability through assessment

    Get PDF
    Students will know some of the benefits and costs of an undergraduate degree. They will be told of the degree 'premium' and that, over a lifetime, they can expect to be better off. A university education will open doors to professions that will seem distant when completing school education. They will anecdotally hear stories about employers expecting a first or upper second. They will also know that some students will never pay back their loans. The reality is that an undergraduate degree can lead to a good job but this is not the case for all students as finding graduate level employment will be very challenging for some. We argue that courses should continually look at ways to enhance the employability of their students. It is understandable that students will see good grades from assessment as the route to a good degree and ultimately to a good job. If assessment can also develop and evidence the skills valued by others, particularly employers, then further benefits are added. There are a number of ways that student employability can be supported, including: careers advice; jobs fairs; visiting speakers and possibly a placement opportunity. We argue that, additionally, assessment can make a difference and with thoughtful design can make an even bigger difference. It is the author's experience that if students are asked what they learnt on their course, they are likely to talk about the outcomes of assessment. If these outcomes also evidence the skills valued by the employer, then this will present a more persuasive response. Assessment is critical for all courses. If assessment can leave the student with outcomes, experience or artefacts that evidence a 'can-do' ability then we argue this must positively impact on employability

    Properties of the cluster population of NGC 1566 and their implications

    Get PDF
    We present results of a photometric study into the cluster population of NGC 1566, a nearby grand design spiral galaxy, sampled out to a Galactocentric radius of ≈5.5\approx 5.5 kpc. The shape of the mass-limited age distribution shows negligible variation with radial distance from the centre of the galaxy, and demonstrates three separate sections, with a steep beginning, flat middle and steep end. The luminosity function can be approximated by a power law at lower luminosities with evidence of a truncation at higher luminosity. The power law section of the luminosity function of the galaxy is best fitted by an index ≈−2\approx -2, in agreement with other studies, and is found to agree with a model luminosity function, which uses an underlying Schechter mass function. The recovered power law slope of the mass distribution shows a slight steepening as a function of galactocentric distance, but this is within error estimates. It also displays a possible truncation at the high mass end. Additionally, the cluster formation efficiency (Γ\Gamma) and the specific U-band luminosity of clusters (TL(U)T_L(U)) are calculated for NGC 1566 and are consistent with values for similar galaxies. A difference in NGC 1566, however, is that the fairly high star formation rate is in contrast with a low ΣSFR\Sigma_{SFR} and Γ\Gamma, indicating that Γ\Gamma can only be said to depend strongly on ΣSFR\Sigma_{SFR}, not the star formation rate

    Evidence for multiple populations in intermediate age cluster Lindsay 1 in the SMC

    Get PDF
    Lindsay 1 is an intermediate age (≈8 Gyr) massive cluster in the Small Magellanic Cloud (SMC). Using VLT FORS2 spectra of 16 probable cluster members on the lower RGB of the cluster, we measure CN and CH band strengths (at ≃ 3883 and 4300 Å respectively), along with carbon and nitrogen abundances and find that a sub-population of stars has significant nitrogen enrichment. A lack of spread in carbon abundances excludes evolutionary mixing as the source of this enrichment, so we conclude that this is evidence of multiple populations. Therefore, L1 is the youngest cluster to show such variations, implying that the process triggering the onset of multiple populations must operate until at least redshift ∌1

    Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations

    Get PDF
    We present the results of a spectroscopic study of the intermediate age (approximately 6.5 Gyr) massive cluster Kron 3 in the Small Magellanic Cloud. We measure CN and CH band strengths (at 3839 and 4300 Angstroms respectively) using VLT FORS2 spectra of 16 cluster members and find a sub-population of 5 stars enriched in nitrogen. We conclude that this is evidence for multiple populations in Kron 3, the fourth intermediate age cluster, after Lindsay 1, NGC 416 and NGC 339 (ages 6-8 Gyr), to display this phenomenon originally thought to be a unique characteristic of old globular clusters. At 6.5 Gyr this is one of the youngest clusters with multiple populations, indicating that the mechanism responsible for their onset must operate until a redshift of at least 0.75, much later than the peak of globular cluster formation at redshift ~3

    Evidence for multiple populations in the intermediate age cluster Lindsay 1 in the SMC

    Get PDF
    Lindsay 1 is an intermediate age (approx 8 Gyr) massive cluster in the Small Magellanic Cloud (SMC). Using VLT FORS2 spectra of 16 probable cluster members on the lower RGB of the cluster, we measure CN and CH band strengths (at 3883 and 4300 Angstroms respectively), along with carbon and nitrogen abundances and find that a sub-population of stars has significant nitrogen enrichment. A lack of spread in carbon abundances excludes evolutionary mixing as the source of this enrichment, so we conclude that this is evidence of multiple populations. Therefore, L1 is the youngest cluster to show such variations, implying that the process triggering the onset of multiple populations must operate until at least redshift ~1
    • 

    corecore