108 research outputs found

    Habitat thresholds for successful predation under landscape change

    Get PDF

    Bush Encroachment and Large Carnivore Predation Success in African Landscapes:A Review

    Get PDF
    Bush encroachment is a habitat change phenomenon that threatens savanna and grassland ecosystems worldwide. In Africa, large carnivores in bush encroached landscapes must adjust to increasing woody plant cover and biomass, which could affect predation success at multiple stages through complex and context-dependent pathways. We highlight, interpret, and compare studies that assessed how bush encroachment or related habitat parameters affect the predation stages of large African carnivores. Bush encroachment may directly or indirectly affect predation success in various ways, including by: (1) altering habitat structure, which may affect hunting efficiency and prey accessibility; (2) changing prey abundance/distribution, with smaller species and browsers being potentially favoured; (3) influencing interference competition within the carnivore guild. For habitat or dietary specialists, and subordinate predators that are vulnerable to both top-down and bottom-up ecosystem effects, these alterations may be detrimental and eventually incur population fitness costs. As the threat of bush encroachment continues, future studies are required to assess indirect effects on competitive interactions within the large African carnivore guild to ensure that conservation efforts are focused. Additionally, to better understand the effects of bush encroachment across Africa, further research is necessary in affected areas as overall little attention has been devoted to the topic

    Effect of the Glycemic Index of Carbohydrates on Acne vulgaris

    Get PDF
    Acne vulgaris may be improved by dietary factors that increase insulin sensitivity. We hypothesized that a low-glycemic index diet would improve facial acne severity and insulin sensitivity. Fifty-eight adolescent males (mean age ± standard deviation 16.5 ± 1.0 y and body mass index 23.1 ± 3.5 kg/m2) were alternately allocated to high or low glycemic index diets. Severity of inflammatory lesions on the face, insulin sensitivity (homeostasis modeling assessment of insulin resistance), androgens and insulin-like growth factor-1 and its binding proteins were assessed at baseline and at eight weeks, a period corresponding to the school term. Forty-three subjects (n = 23 low glycemic index and n = 20 high glycemic index) completed the study. Diets differed significantly in glycemic index (mean ± standard error of the mean, low glycemic index 51 ± 1 vs. high glycemic index 61 ± 2, p = 0.0002), but not in macronutrient distribution or fiber content. Facial acne improved on both diets (low glycemic index −26 ± 6%, p = 0.0004 and high glycemic index −16 ± 7%, p = 0.01), but differences between diets did not reach significance. Change in insulin sensitivity was not different between diets (low glycemic index 0.2 ± 0.1 and high glycemic index 0.1 ± 0.1, p = 0.60) and did not correlate with change in acne severity (Pearson correlation r = −0.196, p = 0.244). Longer time frames, greater reductions in glycemic load or/and weight loss may be necessary to detect improvements in acne among adolescent boys

    Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies

    Get PDF
    The dramatic increase in heterogeneous types of biological data—in particular, the abundance of new protein sequences—requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity—GPCRs and kinases from humans, and the crotonase superfamily of enzymes—we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships

    An Atlas of the Thioredoxin Fold Class Reveals the Complexity of Function-Enabling Adaptations

    Get PDF
    The group of proteins that contain a thioredoxin (Trx) fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features—including variations on a dithiol CxxC active site motif—that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif—only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Genetic Association for Renal Traits among Participants of African Ancestry Reveals New Loci for Renal Function

    Get PDF
    Chronic kidney disease (CKD) is an increasing global public health concern, particularly among populations of African ancestry. We performed an interrogation of known renal loci, genome-wide association (GWA), and IBC candidate-gene SNP association analyses in African Americans from the CARe Renal Consortium. In up to 8,110 participants, we performed meta-analyses of GWA and IBC array data for estimated glomerular filtration rate (eGFR), CKD (eGFR <60 mL/min/1.73 m2), urinary albumin-to-creatinine ratio (UACR), and microalbuminuria (UACR >30 mg/g) and interrogated the 250 kb flanking region around 24 SNPs previously identified in European Ancestry renal GWAS analyses. Findings were replicated in up to 4,358 African Americans. To assess function, individually identified genes were knocked down in zebrafish embryos by morpholino antisense oligonucleotides. Expression of kidney-specific genes was assessed by in situ hybridization, and glomerular filtration was evaluated by dextran clearance. Overall, 23 of 24 previously identified SNPs had direction-consistent associations with eGFR in African Americans, 2 of which achieved nominal significance (UMOD, PIP5K1B). Interrogation of the flanking regions uncovered 24 new index SNPs in African Americans, 12 of which were replicated (UMOD, ANXA9, GCKR, TFDP2, DAB2, VEGFA, ATXN2, GATM, SLC22A2, TMEM60, SLC6A13, and BCAS3). In addition, we identified 3 suggestive loci at DOK6 (p-value = 5.3×10−7) and FNDC1 (p-value = 3.0×10−7) for UACR, and KCNQ1 with eGFR (p = 3.6×10−6). Morpholino knockdown of kcnq1 in the zebrafish resulted in abnormal kidney development and filtration capacity. We identified several SNPs in association with eGFR in African Ancestry individuals, as well as 3 suggestive loci for UACR and eGFR. Functional genetic studies support a role for kcnq1 in glomerular development in zebrafish

    Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis.

    Get PDF
    Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation
    corecore