25 research outputs found

    A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes

    Get PDF
    Background: Highly parallel,‘second generation’ sequencing technologies have rapidly expanded the number of bacterial whole genome sequences available for study, permitting the emergence of the discipline of population genomics. Most of these data are publically available as unassembled short-read sequence files that require extensive processing before they can be used for analysis. The provision of data in a uniform format, which can be easily assessed for quality, linked to provenance and phenotype and used for analysis, is therefore necessary. Results: The performance of de novo short-read assembly followed by automatic annotation using the pubMLST. orgNeisseriadatabase was assessed and evaluated for 108 diverse, representative, and well-characterisedNeisseria meningitidisisolates. High-quality sequences were obtained for >99% of known meningococcal genes among the de novoassembled genomes and four resequenced genomes and less than 1% of reassembled genes had sequence discrepancies or misassembled sequences. A core genome of 1600 loci, present in at least 95% of the population, was determined using the Genome Comparator tool. Genealogical relationships compatible with, but at a higher resolution than, those identified by multilocus sequence typing were obtained with core genome comparisons and ribosomal protein gene analysis which revealed a genomic structure for a number of previously described phenotypes. This unified system for cataloguing Neisseria genetic variation in the genome was implemented and used for multiple analyses and the data are publically available in the PubMLST Neisseria database. Conclusions: The de novo assembly, combined with automated gene-by-gene annotation, generates high quality draft genomes in which the majority of protein-encoding genes are present with high accuracy. The approach catalogues diversity efficiently, permits analyses of a single genome or multiple genome comparisons, and is a practical approach to interpreting WGS data for large bacterial population samples. The method generates novel insights into the biology of the meningococcus and improves our understanding of the whole population structure, not just disease causing lineages.</p

    Evolution of Sequence Type 4821 Clonal Complex Hyperinvasive and Quinolone-Resistant Meningococci

    Get PDF
    Expansion of quinolone-resistant Neisseria meningitidis clone ChinaCC4821-R1-C/B from sequence type (ST) 4821 clonal complex (CC4821) caused a serogroup shift from serogroup A to serogroup C invasive meningococcal disease (IMD) in China. To determine the relationship among globally distributed CC4821 meningococci, we analyzed whole-genome sequence data from 173 CC4821 meningococci isolated from 4 continents during 1972-2019. These meningococci clustered into 4 sublineages (1-4); sublineage 1 primarily comprised of IMD isolates (41/50, 82%). Most isolates from outside China (40/49, 81.6%) formed a distinct sublineage, the Europe-USA cluster, with the typical strain designation B:P1.17-6,23:F3-36:ST-3200(CC4821), harboring mutations in penicillin-binding protein 2. These data show that the quinolone-resistant clone ChinaCC4821-R1-C/B has expanded to other countries. The increasing distribution worldwide of serogroup B CC4821 raises the concern that CC4821 has the potential to cause a pandemic that would be challenging to control, despite indirect evidence that the Trumenba vaccine might afford some protection

    Frequent capsule switching in 'ultra-virulent' meningococci - Are we ready for a serogroup B ST-11 complex outbreak?

    Get PDF
    The meningococcal ST-11 complex (cc11) causes large invasive disease outbreaks with high case fatality rates, such as serogroup C (MenC) epidemics in industrialised nations in the 1990s and the serogroup W epidemic currently expanding globally. Glycoconjugate vaccines are available for serogroups A, C, W and Y. Broad coverage protein-based vaccines have recently been licensed against serogroup B meningococci (MenB), however, these do not afford universal MenB protection. Capsular switching from MenC to MenB among cc11 organisms is concerning because a large MenB cc11 (B:cc11) outbreak has the potential to cause significant morbidity and mortality. This study aimed to assess the potential for licensed and developmental non-capsular meningococcal vaccines to protect against B:cc11. The population structure and vaccine antigen distribution was determined for a panel of >800 geo-temporally diverse, predominantly MenC cc11 and B:cc11 genomes. The two licensed vaccines potentially protect against many but not all B:cc11 meningococci. Furthermore, strain coverage by these vaccines is often due to a single vaccine antigen and both vaccines are highly susceptible to vaccine escape owing to the apparent dispensability of key proteins used as vaccine antigens. cc11 strains with MenB and MenC capsules warrant special consideration when formulating future non-capsular meningococcal vaccines

    The global meningitis genome partnership.

    Get PDF
    Genomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data

    Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection.

    Get PDF
    Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial microevolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypothetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution

    Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme

    Get PDF
    Objective: Serogroup W and Y invasive meningococcal disease increased globally from 2000 onwards. Responding to a rapid increase in serogroup W clonal complex 11 (W:cc11) invasive meningococcal disease, the UK replaced an adolescent booster dose of meningococcal C conjugate vaccine with quadrivalent MenACWY conjugate vaccine in 2015. By 2018, the vaccine coverage in the eligible school cohorts aged 14 to 19 years was 84%. We assessed the impact of the MenACWY vaccination programme on meningococcal carriage. Methods: An observational study of culture-defined oropharyngeal meningococcal carriage prevalence before and after the start of the MenACWY vaccination programme in UK school students, aged 15 to 19 years, using two cross-sectional studies: 2014 to 2015 “UKMenCar4” and 2018 “Be on the TEAM” (ISRCTN75858406). Results: A total of 10 625 participants preimplementation and 13 434 postimplementation were included. Carriage of genogroups C, W, and Y (combined) decreased from 2.03 to 0.71% (OR 0.34 [95% CI 0.27–0.44], p < 0.001). Carriage of genogroup B meningococci did not change (1.26% vs 1.23% [95% CI 0.77–1.22], p = 0.80) and genogroup C remained rare (n = 7/10 625 vs 17/13 488, p = 0.135). The proportion of serogroup positive isolates (i.e. those expressing capsule) decreased for genogroup W by 53.8% (95% CI –5.0 to 79.8, p = 0.016) and for genogroup Y by 30.1% (95% CI 8.9–46·3, p = 0.0025). Discussion: The UK MenACWY vaccination programme reduced carriage acquisition of genogroup and serogroup Y and W meningococci and sustained low levels of genogroup C carriage. These data support the use of quadrivalent MenACWY conjugate vaccine for indirect (herd) protection

    Meningococcal genome dynamics: an allele based, population approach to define lineage structure

    No full text
    Advances in genome sequencing technologies have rapidly expanded the number of bacterial genome sequences available for study, permitting the emergence of the discipline of population genomics. Bioinformatics platforms were used to exploit this resource by the provision of data in an easily accessible and uniform format. The de novo assembly, combined with gene-by-gene annotation, generated high quality draft genomes in which the majority of protein-encoding genes were present with high accuracy. The approach catalogued diversity efficiently and was a practical approach to interpreting whole genome sequence data for a large bacterial population. The hyperinvasive meningococcal Lineage 3 core and accessory genome was described and mobile genetic elements and undescribed proteins were found to be influencing the shape of the lineages evolution and population structure. Commensal carriage of the meningococcus was examined using temporally paired isolates. Long-term carriage was found and the comparison of the genomes pairs found a highly conserved set of core genes. The methods used generated novel insights into the biology of the meningococcus and improved our understanding of the whole population structure, not just disease causing lineages. This work contributes to knowledge of genomic evolution of bacteria and population structure within a species. </p

    Meningococcal genome dynamics: an allele based, population approach to define lineage structure

    No full text
    Advances in genome sequencing technologies have rapidly expanded the number of bacterial genome sequences available for study, permitting the emergence of the discipline of population genomics. Bioinformatics platforms were used to exploit this resource by the provision of data in an easily accessible and uniform format. The de novo assembly, combined with gene-by-gene annotation, generated high quality draft genomes in which the majority of protein-encoding genes were present with high accuracy. The approach catalogued diversity efficiently and was a practical approach to interpreting whole genome sequence data for a large bacterial population. The hyperinvasive meningococcal Lineage 3 core and accessory genome was described and mobile genetic elements and undescribed proteins were found to be influencing the shape of the lineages evolution and population structure. Commensal carriage of the meningococcus was examined using temporally paired isolates. Long-term carriage was found and the comparison of the genomes pairs found a highly conserved set of core genes. The methods used generated novel insights into the biology of the meningococcus and improved our understanding of the whole population structure, not just disease causing lineages. This work contributes to knowledge of genomic evolution of bacteria and population structure within a species. </p

    Draft genome sequence of dichelobacter nodosus ATCC 25549, strain VPI 2340 [11342], a bacterium causing footrot in sheep

    No full text
    We report a draft genome sequence forDichelobacter nodosusATCC 25549, strain VPI 2340 [11342], a causative agent of ovine footrot. The draft genome shares ~98% gene similarity with the available genome ofD. nodosusstrain VCS1703A but is differentiated by extensive gene duplication and the absence of 13 particular genes

    Neisseria meningitidis Serogroup X Sequence Type 767 in Turkey▿

    No full text
    Neisseria meningitidisis a common inhabitant of the nasopharyngeal tracts of healthy humans and is a significant cause of invasive infections such as meningitis in young children and adolescents worldwide (14).N. meningitidishas been classified into 13 serogroups on the basis of antigenic variation of the capsule, but only serogroups A, B, C, Y, and W-135 have commonly caused invasive infections (8). In Turkey, W-135 has been the most frequently reported serogroup since an international outbreak was reported following the annual Hajj seasons in Saudi Arabia in 2000 and 2001 (10). During the years 2003 to 2008, 17 serogroup W-135 strains (from eight meningitis cases) were isolated from Turkish recruits vaccinated with A+C polysaccharide meningococcal vaccine (10–12)
    corecore