507 research outputs found

    Understanding the stabilizing effect of histidine on mAb aggregation: a molecular dynamics study.

    Get PDF
    Histidine, a widely used buffer in monoclonal antibody (mAb) formulations, is known to reduce antibody aggregation. While experimental studies suggest a nonelectrostatic, nonstructural (relating to secondary structure preservation) origin of the phenomenon, the underlying microscopic mechanism behind the histidine action is still unknown. Understanding this mechanism will help evaluate and predict the stabilizing effect of this buffer under different experimental conditions and for different mAbs. We have used all-atom molecular dynamics simulations and contact-based free energy calculations to investigate molecular-level interactions between the histidine buffer and mAbs, which lead to the observed stability of therapeutic formulations in the presence of histidine. We reformulate the Spatial Aggregation Propensity index by including the buffer-protein interactions. The buffer adsorption on the protein surface leads to lower exposure of the hydrophobic regions to water. Our analysis indicates that the mechanism behind the stabilizing action of histidine is connected to the shielding of the solvent-exposed hydrophobic regions on the protein surface by the buffer molecules

    Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery.

    Get PDF
    BACKGROUND: Intraoperative fluid therapy regimens using oesophageal Doppler monitoring (ODM) to optimize stroke volume (SV) (goal-directed fluid therapy, GDT) have been associated with a reduction in length of stay (LOS) and complication rates after major surgery. We hypothesized that intraoperative GDT would reduce the time to surgical readiness for discharge (RfD) of patients having major elective colorectal surgery but that this effect might be less marked in aerobically fit patients. METHODS: In this double-blinded controlled trial, 179 patients undergoing major open or laparoscopic colorectal surgery were characterized as aerobically 'fit' (n=123) or 'unfit' (n=56) on the basis of their performance during a cardiopulmonary exercise test. Within these fitness strata, patients were randomized to receive a standard fluid regimen with or without ODM-guided intraoperative GDT. RESULTS: GDT patients received an average of 1360 ml of additional intraoperative colloid. The mean cardiac index and SV at skin closure were significantly higher in the GDT group than in controls. Times to RfD and LOS were longer in GDT than control patients but did not reach statistical significance (median 6.8 vs 4.9 days, P=0.09, and median 8.8 vs 6.7 days, P=0.09, respectively). Fit GDT patients had an increased RfD (median 7.0 vs 4.7 days; P=0.01) and LOS (median 8.8 vs 6.0 days; P=0.01) compared with controls. CONCLUSIONS: Intraoperative SV optimization conferred no additional benefit over standard fluid therapy. In an aerobically fit subgroup of patients, GDT was associated with detrimental effects on the primary outcome. TRIAL REGISTRY: UK NIHR CRN 7285, ISRCTN 14680495. http://public.ukcrn.org.uk/Search/StudyDetail.aspx?StudyID=7285

    Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities

    Get PDF
    Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated ā€˜symbiosis islandā€™ (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance

    Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities

    Get PDF
    Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated ā€˜symbiosis islandā€™ (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance

    Availability of Advance Care Planning Documentation for Older Emergency Department Patients: A Cross-Sectional Study

    Get PDF
    Introduction: Increasing advance care planning (ACP) among older adults is a national priority. Documentation of ACP in the electronic health record (EHR) is particularly important during emergency care

    Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids

    Full text link
    Recently it has been experimentally demonstrated that certain glasses display an unexpected magnetic field dependence of the dielectric constant. In particular, the echo technique experiments have shown that the echo amplitude depends on the magnetic field. The analysis of these experiments results in the conclusion that the effect seems to be related to the nuclear degrees of freedom of tunneling systems. The interactions of a nuclear quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with magnetic field transform the two-level tunneling systems inherent in amorphous dielectrics into many-level tunneling systems. The fact that these features show up at temperatures T<100mKT<100mK, where the properties of amorphous materials are governed by the long-range Rāˆ’3R^{-3} interaction between tunneling systems, suggests that this interaction is responsible for the magnetic field dependent relaxation. We have developed a theory of many-body relaxation in an ensemble of interacting many-level tunneling systems and show that the relaxation rate is controlled by the magnetic field. The results obtained correlate with the available experimental data. Our approach strongly supports the idea that the nuclear quadrupole interaction is just the key for understanding the unusual behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure
    • ā€¦
    corecore