10 research outputs found

    Seven Key Principles of Program and Project Success: A Best Practices Survey

    Get PDF
    The National Aeronautics and Space Administration (NASA) Organization Design Team (ODT), consisting of 20 seasoned program and project managers and systems engineers from a broad spectrum of the aerospace industry, academia, and government, was formed to support the Next Generation Launch Technology (NGLT) Program and the Constellation Systems Program. The purpose of the ODT was to investigate organizational factors that can lead to success or failure of complex government programs, and to identify tools and methods for the design, modeling, and analysis of new and more-efficient program and project organizations. The ODT conducted a series of workshops featuring invited lectures from seasoned program and project managers representing 25 significant technical programs spanning 50 years of experience. The result was the identification of seven key principles of program success that can be used to help design and operate future program organizations. This paper presents the success principles and examples of best practices that can significantly improve the design of program, project, and performing technical line organizations, the assessment of workforce needs and organization performance, and the execution of programs and projects

    Peptide-Conjugation Induced Conformational Changes in Human IgG1 Observed by Optimized Negative-Staining and Individual-Particle Electron Tomography

    Get PDF
    Peptides show much promise as potent and selective drug candidates. Fusing peptides to a scaffold monoclonal antibody produces a conjugated antibody which has the advantages of peptide activity yet also has the pharmacokinetics determined by the scaffold antibody. However, the conjugated antibody often has poor binding affinity to antigens that may be related to unknown structural changes. The study of the conformational change is difficult by conventional techniques because structural fluctuation under equilibrium results in multiple structures co-existing. Here, we employed our two recently developed electron microscopy (EM) techniques: optimized negative-staining (OpNS) EM and individual-particle electron tomography (IPET). Two-dimensional (2D) image analyses and three-dimensional (3D) maps have shown that the domains of antibodies present an elongated peptide-conjugated conformational change, suggesting that our EM techniques may be novel tools to monitor the structural conformation changes in heterogeneous and dynamic macromolecules, such as drug delivery vehicles after pharmacological synthesis and development

    P2Y12 receptor expression is a critical determinant of functional responsiveness to ATX’s MORFO domain

    No full text
    In the central nervous system, the formation of the myelin sheath and the differentiation of the myelinating cells, namely oligodendrocytes, are regulated by complex signaling networks that involve purinergic receptors and the extracellular matrix. However, the exact nature of the molecular interactions underlying these networks still needs to be defined. In this respect, the data presented here reveal a signaling mechanism that is characterized by an interaction between the purinergic P2Y12 receptor and the matricellular extracellular matrix protein autotaxin (ATX), also known as ENPP2, phosphodiesterase-Iα/ATX, or lysoPLD. ATX has been previously described by us to mediate intermediate states of oligodendrocyte adhesion and to enable changes in oligodendrocyte morphology that are thought to be crucial for the formation of a fully functional myelin sheath. This functional property of ATX is mediated by ATX’s modulator of oligodendrocyte remodeling and focal adhesion organization (MORFO) domain. Here, we show that the expression of the P2Y12 receptor is necessary for ATX’s MORFO domain to exert its effects on differentiating oligodendrocytes. In addition, our data demonstrate that exogenous expression of the P2Y12 receptor can render cells responsive to the known effects of ATX’s MORFO domain, and they identify Rac1 as an intracellular factor mediating the effect of ATX-MORFO-P2Y12 signaling on the assembly of focal adhesions. Our data further support the idea that a physical interaction between ATX and the P2Y12 receptor provides the basis for an ATX-MORFO-P2Y12 signaling axis that is crucial for mediating cellular states of intermediate adhesion and morphological/structural plasticity

    ATP-Mediated Signaling in the Nervous System

    No full text

    Purinergic signalling in neuron–glia interactions

    No full text
    corecore