129 research outputs found

    Predicting Maximum Lake Depth from Surrounding Topography

    Get PDF
    Information about lake morphometry (e.g., depth, volume, size, etc.) aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate measures of lake morphometry, particularly lake depth, are usually collected on a lake-by-lake basis and are difficult to obtain across broad regions. To span the gap between studies of individual lakes where detailed data exist and regional studies where access to useful data on lake depth is unavailable, we developed a method to predict maximum lake depth from the slope of the topography surrounding a lake. We use the National Elevation Dataset and the National Hydrography Dataset – Plus to estimate the percent slope of surrounding lakes and use this information to predict maximum lake depth. We also use field measured maximum lake depths from the US EPA's National Lakes Assessment to empirically adjust and cross-validate our predictions. We were able to predict maximum depth for ∼28,000 lakes in the Northeastern United States with an average cross-validated RMSE of 5.95 m and 5.09 m and average correlation of 0.82 and 0.69 for Hydrological Unit Code Regions 01 and 02, respectively. The depth predictions and the scripts are openly available as supplements to this manuscript

    Borrowed alleles and convergence in serpentine adaptation

    Get PDF
    ACKNOWLEDGMENTS. We thank members of the L.Y. and K.B. laboratories for helpful discussions. This work was supported through the European Research Council Grant StG CA629F04E (to L.Y.); a Harvard University Milton Fund Award (to K.B.); Ruth L. Kirschstein National Research Service Award 1 F32 GM096699 from the NIH (to L.Y.); National Science Foundation Grant IOS-1146465 (to K.B.); NIH National Institute of General Medical Sciences Grant 2R01GM078536 (to D.E.S.); and Biotechnology and Biological Sciences Research Council Grant BB/L000113/1 (to D.E.S.)Peer reviewedPublisher PD

    Assessing the Accuracy of National Land Cover Dataset Area Estimates at Multiple Spatial Extents

    Get PDF
    Site-specific accuracy assessments evaluate fine-scale accuracy of land-use/land-cover (LULC) datasets but provide little insight into accuracy of area estimates of LULC classes derived from sampling units of varying size. Additionally, accuracy of landscape structure metrics calculated from area estimates cannot be determined solely from site-specific assessments. We used LULC data from Rhode Island and Massachusetts as reference to determine the accuracy of area measurements from the National Land Cover Dataset (NLCD) within spatial units ranging from 0.1 to 200 km2. When regressed on reference area, NLCD area of developed land, agriculture, forest, and water had positive linear relationships with high r2, suggesting acceptable accuracy. However, many of these classes also displayed mean differences (NLCD   REFERENCE), and linear relationships between the NLCD and reference were not one-to-one (i.e., low r2, β0 ≠ 0,  β1 ≠ 1), suggesting mapped area is different from true area. Rangeland, wetland, and barren were consistently, poorly classified

    Habitat Characteristics of Northern Bobwhite Quail-Hunting Party Encounters: A Landscape Perspective

    Get PDF
    Landcover data and bobwhite hunting records were used to assess both hunter habitat preferences and the frequency of northern bobwhite encounters by hunting parties in relation to habitat composition during the 1994-1995 and 1995-1996 hunting seasons at the Joseph W. Jones Ecological Research Center in southern Georgia. Patterns of habitat use by hunters, and the frequency of bobwhite encounters varied within and between years, depending on habitat quality, food availability, and other factors. Landscape-scale analyses of standardized bobwhite covey densities (based on coveys pointed in the field) and habitat composition and configuration for the 1994-1995 hunting season revealed that bobwhite densities were: (1) positively associated with the overall percentage agriculture and food plot habitat (reaching a maximum at 30-35% agriculture); and (2) positively associated with edge complexity, and positively associated with agricultural mean patch size [reaching a maximum at 2-3 hectares (5-6 acres)]. Consequently, larger food plots may be more important for increasing bobwhite encounter rates than numerous very small food plots [ \u3c 0.1 hectares (0.25 acres)]. Results of this, and related ongoing studies, have important implications for both landscape design and multiple use resource management. activities in the context of northern bobwhite habitat management in southern upland pine forest ecosystems

    Ten Simple Rules for Digital Data Storage

    Get PDF
    Data is the central currency of science, but the nature of scientific data has changed dramatically with the rapid pace of technology. This change has led to the development of a wide variety of data formats, dataset sizes, data complexity, data use cases, and data sharing practices. Improvements in high throughput DNA sequencing, sustained institutional support for large sensor networks, and sky surveys with large-format digital cameras have created massive quantities of data. At the same time, the combination of increasingly diverse research teams and data aggregation in portals (e.g. for biodiversity data, GBIF or iDigBio) necessitates increased coordination among data collectors and institutions. As a consequence, “data” can now mean anything from petabytes of information stored in professionally-maintained databases, through spreadsheets on a single computer, to hand-written tables in lab notebooks on shelves. All remain important, but data curation practices must continue to keep pace with the changes brought about by new forms and practices of data collection and storage.</jats:p

    A negative feedback loop mediated by the Bcl6-cullin 3 complex limits Tfh cell differentiation

    Get PDF
    Induction of Bcl6 (B cell lymphoma 6) is essential for T follicular helper (Tfh) cell differentiation of antigen-stimulated CD4(+) T cells. Intriguingly, we found that Bcl6 was also highly and transiently expressed during the CD4(+)CD8(+) (double positive [DP]) stage of T cell development, in association with the E3 ligase cullin 3 (Cul3), a novel binding partner of Bcl6 which ubiquitinates histone proteins. DP stage-specific deletion of the E3 ligase Cul3, or of Bcl6, induced the derepression of the Bcl6 target genes Batf (basic leucine zipper transcription factor, ATF-like) and Bcl6, in part through epigenetic modifications of CD4(+) single-positive thymocytes. Although they maintained an apparently normal phenotype after emigration, they expressed increased amounts of Batf and Bcl6 at basal state and produced explosive and prolonged Tfh responses upon subsequent antigen encounter. Ablation of Cul3 in mature CD4(+) splenocytes also resulted in dramatically exaggerated Tfh responses. Thus, although previous studies have emphasized the essential role of Bcl6 in inducing Tfh responses, our findings reveal that Bcl6-Cul3 complexes also provide essential negative feedback regulation during both thymocyte development and T cell activation to restrain excessive Tfh responses

    Apolipoprotein E is a pancreatic extracellular factor that maintains mature β-cell gene expression.

    Get PDF
    The in vivo microenvironment of tissues provides myriad unique signals to cells. Thus, following isolation, many cell types change in culture, often preserving some but not all of their in vivo characteristics in culture. At least some of the in vivo microenvironment may be mimicked by providing specific cues to cultured cells. Here, we show that after isolation and during maintenance in culture, adherent rat islets reduce expression of key β-cell transcription factors necessary for β-cell function and that soluble pancreatic decellularized matrix (DCM) can enhance β-cell gene expression. Following chromatographic fractionation of pancreatic DCM, we performed proteomics to identify soluble factors that can maintain β-cell stability and function. We identified Apolipoprotein E (ApoE) as an extracellular protein that significantly increased the expression of key β-cell genes. The ApoE effect on beta cells was mediated at least in part through the JAK/STAT signaling pathway. Together, these results reveal a role for ApoE as an extracellular factor that can maintain the mature β-cell gene expression profile

    Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians

    Get PDF
    The genome of maize (Zea mays ssp. mays) consists mostly of transposable elements (TEs) and varies in size among lines. This variation extends to other species in the genus Zea: although maize and Zea luxurians diverged only ∼140,000 years ago, their genomes differ in size by ∼50%. We used paired-end Illumina sequencing to evaluate the potential contribution of TEs to the genome size difference between these two species. We aligned the reads both to a filtered gene set and to an exemplar database of unique repeats representing 1,514 TE families; ∼85% of reads mapped against TE repeats in both species. The relative contribution of TE families to the B73 genome was highly correlated with previous estimates, suggesting that reliable estimates of TE content can be obtained from short high-throughput sequencing reads, even at low coverage. Because we used paired-end reads, we could assess whether a TE was near a gene by determining if one paired read mapped to a TE and the second read mapped to a gene. Using this method, Class 2 DNA elements were found significantly more often in genic regions than Class 1 RNA elements, but Class 1 elements were found more often near other TEs. Overall, we found that both Class 1 and 2 TE families account for ∼70% of the genome size difference between B73 and luxurians. Interestingly, the relative abundance of TE families was conserved between species (r = 0.97), suggesting genome-wide control of TE content rather than family-specific effects

    Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes

    Get PDF
    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms
    corecore